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Introduction

This is the seventh book containing examples from the Theory of Complex Functions. In this volume
we shall apply the calculations or residues in computing special types of trigonometric integrals, some
types of improper integrals, including the computation of Cauchy’s principal value of an integral, and
the sum of some types of series. We shall of course assume some knowledge of the previous books and
the corresponding theory.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
19th June 2008
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1 Some practical formula in the applications of the calcula-
tion of residues

1.1 Trigonometric integrals

We have the following theorem:

Theorem 1.1 Given a function R(z,y) in two real variables in a domain of R?. If the formal
extension, given by

R 22.—1’224-1 ’
21z 2z

is an analytic function in a domain Q@ C C, which contains the unit circle |z| =1, then

R(zl—1722+1>%

2iz 2z iz

27

R(sin6, cos ) df = f
0 |z|=1
In most applications, R(sin 0, cos ) is typically given as a “trigonometric rational function”, on which
the theorem can be applied, unless the denominator of the integrand is zero somewhere in the interval
[0, 27].
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1.2 Improper integrals in general

We shall now turn to the improper integrals over the real axis. The general result is the following
extension of Cauchy’s residue theorem:

Theorem 1.2 Given an analytic function f : Q0 — C on an open domain Q) which, apart from a finite
number of points z1, ..., zn, all satisfying Im z; > 0, j =1, ..., n, conlains the closed upper half
plane, i.e.

QU {z,....2n} D{z€C|Im z > 0}.

If there exist constants R >0, ¢ > 0 and a > 1, such that we have the estimate,

C

2]

IF(2)] <

when both |z| > R and Im z > 0,

then the improper integral of f(x) along the X -axis is convergent, and the value is given by the following
residuum formula,

/+Oof(x)dx:27ri Z res(f;zﬂz%riires(f;zj).

- Im z;>0 Jj=1

1.3 Improper integrals, where the integrand is a rational function

We have the following important special case, where f(z) is a rational function with no poles on the
real axis. When this is the case, the theorem above is reduced to the following:

P(z)

Theorem 1.3 Given a rational function f(z) = Q— without poles on the real axis. If the degree of
z

the denominator polynomial is at least 2 bigger than the degree of the numerator polynomial, then the
improper integral of f(x) along the real axis exists, and its value is given by a residuum formula,

+o00o
/ f(x)de = 2mi Z res (f;z;).

- Im z; >0

1.4 Improper integrals, where the integrand is a rational function time a
trigonometric function

If the integrand is a rational function time a trigonometric function, we even obtain a better result,
because the exponent of the denominator in the estimate can be chosen smaller:

Theorem 1.4 Assume that f : Q — C is an analytic function on an open domain ), which, apart
from a finite number of points z1, ..., zn, where all Im z; > 0, j = 1, ..., n, contains all of the
closed upper half plane, i.e.

QU {z,....2n} D{z€C|Im z > 0}.

If there exist constants R > 0, ¢ > 0 and a > 0, such that we have the estimate

c
|2

lf(2)] < if both |z| > R and Im z > 0,
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then the improper integral of f(x)e™™* along the X -axis ewists for every m > 0, and its value is given
by the following residuum formula,

/+<>0 f(z)e™® dx = 2mi Z res (f(z) eimz;zj) = QWines (feimz;zj) .
j=1

—0o0
Im z;>0

In the special case, where f(z) is a rational function, we of course get a simpler result:

Theorem 1.5 Given f(z) = -e'™* where P(z) and Q(z) are polynomials. Assume that

1) the denominator Q(z) does not have zeros on the real axis,
2) the degree of the denominator is at least 1 bigger than the degree of the numerator,
3) the constant m is a real positive number.

Then the corresponding improper integral along the real azis is convergent and its value is given by a
residuum formula,

PR e Y (D ).

Im z;>0

The ungraceful assumption m > 0 above can be repared by the following:

Theorem 1.6 Assume that f(2) is analytic in C\{z1, ..., 2, }, where none of the isolated singularities
zj lies on the real awis.

If there exist positive constants R, a, ¢ > 0, such that

C

1f(2)] < PG for |z| = R,
then
oo . 270 Y Im 2,50 Tes (f(2)€e*¥; z;) fory >0,
/ f(z)e™ de = _
- =270 ) I 2 <0 Tes (f(z)€e=v;2;) fory < 0.

In the final theorem of this section we give some formulee for improper integrals, containing either
cosmx or sinmx as a factor of the integrand. We may of course derive them from the theorem above,
but it would be more helpful, if they are stated separately:
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Theorem 1.7 Given a function f(z) which is analytic in an open domain 0 which — apart from a
finite number of points z1,. .., z,, where Im z; > 0 — contains the closed upper half plane Im z; > 0.
Assume that f(x) € R is real, if x € R is real, and that there exist positive constants R, a, ¢ > 0, such
that we have the estimate,

lf(2)] < ‘C|a, for ITm z >0 and |z| > R.
z
Then the improper integrals fj_;: f(x) Z?Ségi)) dz are convergent for every m > 0 with the values

given by

+oo
/ f(z) cos(mz) dx = Re | 2mi Z res (f(2) €™ z) ¢,

—0o0
Im z;>0

and

+o0o
/ f(x) sin(mz) de = Im < 27i Z res (f(z) e z) ¢,

- Im z; >0

respectively.

1.5 Cauchy’s principal value

If the integrand has a real singularity zo € R, it is still possible in some cases with the right interpre-
tation of the integral as a principal value, i.e.

o [ trtem g {7 [ s

to find the value of this integral by some residuum formula.

Here v.p. (= “valeur principal”) indicates that the integral is defined in the sense given above where
one removes a symmetric interval around the singular point, and then go to the limit.

Using the definition above of the principal value of the integral we get
Theorem 1.8 Let f: 2 — C be an analytic function on an open domain ), where
D2{zeC|lImz>0}\{z1,...,2n}.

Assume that the singularities z;, which also lie on the real azis, all are simple poles.
If there exist constants R >0, ¢ > 0 and a > 1, such that we have the estimate

[F(z)] <

C

] for Im z >0 and |2| > R,
ZG/

then Cauchy’s principal value v.p. fj—;: f(z) dx exists, and its value is given by the following residuum
formula,

+o0o
v.p./ f(z)dx = 2mi Z res (f;zj) + mi Z res (f;z;).

e Im z; >0 Im z;=0
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This formula is easily remembered if one think of the real path of integration as “splitting” the
residuum into two equal halves, of which one half is attached to the upper half plane, and the other
half is attached to the lower half plane.

It is easy to extend the residuum formula for Cauchy’s principal value to the previous cases, in which
we also include a trigonometric factor in the integrand.
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1.6 Sum of some series

Finally, we mention a theorem with some residuum formulae, which can be used to determine the sum
of special types of series,

Theorem 1.9 Let f : Q — C be an analytic function in a domain of the type Q@ = C\ {z1,...,2n},
where every z; ¢ 7.

If there exist constants R, ¢ > 0 and a > 1, such that

for |z| > R,

—+o0

then the series ) "

f(n) is convergent with the sum

n

+oo
Z f(n) = —FZ res (cot(mz) - f(2);25) .

n=—oo

+oo

Furthermore, the alternating series Y~~~ (—=1)" f(n) is also convergent. Its sum is given by

ni(—mﬂn) - —r Y ().
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2 Trigonometric integrals

Example 2.1 Compute fo% e? 50 4.

Here, the auxiliary function is given R(£,7n) = €27, in which ¢ does not enter. The function

22—-1 2241 2241
R —, = exp
21z 2z z

is analytic in C\ {0}, so

2 ]
, 1\ d 2 1 1
/ chostGZ% exp (Z+—> .—z:ﬂres (— exp (Z+_> ;0)'
0 j2l=1 #om : :

We note that both z = 0 and z = oo are essential singularities, so we are forced to determine the
Laurent series of the integrand in 0 < |z|. However, there is a shortcut here, because we shall only be
interested in the coefficient a_1. We see from

+oo +oo
1 1 1 1 1 1 11
- - P . - _ m - 0
B exp <Z+ Z) = B exp z eXPZ = ZmE:O ] z ng:O ol o z 7£ ,

that a_; is obtained by a Cauchy multiplication as the coefficient, which corresponds to m = n, thus

2m +oo 1
2cos0
e df =27 —,
/ 2 P

which can be shown to be equal to Jy(2¢), where Jy(z) is the zeroth Bessel function.

df
2+ cosf’

Example 2.2 Compute fo%
. : . 0
This integral can of course be computed in the traditional real way (change to tan 2 where one of

course must be careful with the singularity at § = 7). We have in fact,

™

/2” 50 _/27r do _22/5 dt _g/ﬂo du 43w 21
o 2+4cosf 3cos22+sin2€ o 3cos?t+sin’t 3 ) 1+%u2 3 2 V3

2

If we instead apply the Complex Function Theory, then we have the following computation

/2” do ]{ 1 dz jg -2
_— = _— = _— A
2 + cosf _ 2241 iz 122 +4z+1
0 |z 12+— |z|=1
2z
1 1 2
= (=2i¢) 2mwires 7;—2—1—\/5):477 Iim @ —mm— = —,
(=20) <22+4z+1 24 V32 +24+V3 V3

where we have applied that z2 + 4z + 1 has the roots —2 + v/3, of which only —2 + /3 lies inside
|z| = 1.
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Example 2.3 Prove that
(@) /27T cos 20 o= ) /2” cos 36 o=
o H—3cosf 18’ o Hb—3cos 54

a) We shall use the substitution z = e, where in particular
s p ,

1 X . 1 1
cos 20 = 5 {6219 —|—e_210} =3 {22 + ;} )

Then

1{2+ 1} 5 1
- -9z — —
/2 cos20 . _ ]{ 2 22 dz 1% Zr 5
0 |lz|=

= —=—dz
5—3cosd |2)=1 =322 +102 =3

S iy
15——{2—1——} iz i
2 z

1 Y41 1 t4+1
_ 1 5+ dz:——_% 25+ ds
31 12121 0 {z2—92+1} 3 Jls1=1 0 (z—l
3

- res A1 ;0] +res 21 .
=3 22(22-Rz241)7 2(2-%)(2=3)"3) |~

We obtain by RULE I,

. A1 1y aftl s a
22(z—1)(2-3)" 3 11 - 3-(-8) 12’
32\ 3
and
res ald ;0 = 1limd 241
22(22—%24—1)’ 1 z—=0dz 22—%2'—1—1

z—0

3 4 10
_ hm{2 4z () (22 3)}9
z

-3+l (22—1—??24—1)2 3
Finally, by insertion,

/2“ cos20 . 2mi [ 41 10] 27 [—414+40) 7

o H5—3cosf  =3i|l 12 3f 3 12 18

(b) For the substitution z = ¢*?, where we see that in particular,

1 ) ) 1 1
cos 30 = 3 {3 + 7310} = 3 {z3 + ;} ,

Download free books at BookBooN.com
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we get

27 5 3 1 27+ =
/ cos 30 a0 % 2 ) dz z j{ B4
0 | 2 7l

5-3cosf  Jum5-3{z+1} iz e 22— W4

2 res 241 1‘0 + res 241 L
3 2-PQz+1 237 #(z—3)(z-3)"3) [

Here,
1 1
3 3
O = S I A -
C-De-93] 15 98 3
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and
1 1
23+; 23
es ;0] =res ; 0
' 2-0z41 : 22—z 41
L& 1 L. d 22 -3
= —Jm—<{—— 4 ="1lim—<{-——""3
20:20d2 |2 —War 1) 2:00de | (22— 10, 41)°
1 2 2 (22 — 10)? 100 91
= — lim< — (22~ 5) 7 (= 1+ ~— 9
2 z—0 (22 %z—&—l) (22 1OZ+1) 9 9

hence by insertion,

/2” cos 360 27 { 365 91 } 21 364 — 364 s s
do + = — _
0

36 9 3 36 3.18 54

5-3cosf 3

Example 2.4 Prove that

27
do 2m
= , 0<a<l.
/0 1+a?—2acosf 1—a? Jor “

Find also the value, when a > 1.

We get by the substitution z = €%’ that

d@z% and cosﬁzl{z%—l},
12 2 z
thus
/2“ do B % 1 @__1}{ dz
o 1+a%—2acosf |Z|=11—|—a2—(z—|—l>aiz i Jiz=1 022 — (1+a?)z+a
z

i

dz

= fﬁ 1 .
“ |Z|_122—<a+—)z+1
a

1
The integrand has the poles z = a and z = —. Of these, only z = a lies inside the circle |z| = 1, hence
a
/2’r o Lo e 1
= —-2mi-r pa
1+a?-2 0 1 '
0 +a a cos a 22—<a+—>z+1
a
2 I 1 27 1 27 27
= — lim ———=——- = = .
a =—1_ 1 a a?-1 1-a?
a a
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1
If a > 1, then 0 < — < 1, and it follows from the above that
a

/2” do 1 /2” do 1 2r 2r
1+a2—2acosf a2 1)\ 2 1 a2 I a2-1"
0 0 1+(—> —2-— cosf 1*9

a a

Remark 2.1 We note that the case a < 0 gives the same values, only dependent on if |a] < 1 or
la| > 1. Finally, the case a = 0 is trivial. ¢

Summing up,

2
de 2m
= f R\{-1,1}.
/0 1+4a?—2acost |1—a?|’ ora€R\{=L1}

The integral is divergent, if a = +1.
Example 2.5 Prove that if a > 1, then

/2<m’ a  o2r
0 a+sint a2 —1

It follows from

27 2 2
-1 1\ d
R(sin@,cos@)d@z% R(Z —, 7 ) i,
0 2|=1 2iz 2z 12
that
27
dt 1 d 1
o a-+sint |2|=1 z—1 iz |2|=1 2° +2iaz — 1
a+ ——
2iz
. 1 .
The function —————— has the two simple poles
22 +2iaz—1

z=—ia+\/—a?—1.

Of these only z =1 {\/ a?—1- 1} lies inside the unit circle. Hence

/:ﬂi - 2-2m’-res<; '{M—l})

a+sint 22+2iaz—1;2
1 1 2T
= 2-2m lim =2-2m - = .
ci{VarToa) 2 +ivVa® —1+ia 2iva—1 Va®—1
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Example 2.6 Compute

27
/ cos(2cos ) db,
0

expressed as a sum 3 120 ap.

Applying the substitution z = e we get

2 .
1\ d 2 1 1
/ cos(2cosf)df = j{ cos<z+—)i:ﬂres<_ cos(z—i——);())
0 |z|=1 z) iz 7 z z
1 1
= 27T~res<—cos<z+—>;0).
z z
It follows from
s D) = e (1 {re i) oo (2]
—cos|z+—-|=--sqexpliqz+ -, | +exp|—i92z+ -
z z z 2 z z
1 (i 2) 1 n (—i2) i
3 exp(7 z) - exp p, exp(—1iz) - exp .
1
2

=1 X1 =X =1 1
{Zmz Y D (F)TE Y — () 'Z—n}’

m=0 n=0 m=0 n=0

IS S e

that the coefficient a_; in the Laurent series expansion for

s (e4)
—cos|z+—
z z
is determined by m = n, i.e.
S AT ) G R N Vs

1 7 7 —
=5 I T

2
n=0 n=0 ' n=0 (’I’L')

which can be shown to be equal to Jo(2), where Jy(z) is the zeroth Bessel function. Hence we conclude
that at

- 2cos ) df = 2 ! 1) o) =2 =2 m(*l)n—Q Jo(2
cos(2 cos0) df = 2m res ~ cos z+; ;0 ) =2ma_; = WZW— 7w Jo(2).

0
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Example 2.7 (a) Determine the Taylor series from z =0 of
1
1 )
22— la+—-)z+1
a

in the form Z;:B apzP.
Find the radius of convergence r of the series.

where 0 < a < 1,

(b) Find the Laurent series of
A A

1) = —
2" — <a+—>z+1
a

in the domain given by 0 < |z| <, by using the result of (a), and then find the residuum of f at
the point z = 0.

neN, 0<a<l,

(c) Compute

27
/ cosv) 4 peN, O<a<l,
0

1+ a2 —2a coswv

by transforming the integral into a line integral in the complex plane.

(a) First note that we have the factor expansion

22—(a+%)z+1:(z—a) (z—%)

1
If 2| < a << —), it follows by a decomposition and an application of the geometric series,
a

1 B 1 o L, 1
1 N 1\ I 2—q ' 1 1
22—la+-]z+1 (z—a)|z—— a—— ——a z—-—
a a a a a
I T U S 1 1
B a_- @ 12 1 1\ 1-az
a a a a
1 2 a? R 1 & i
- ) PP — —p p+2,p
- A ) e e {E e Te

I 122
— 2P,

a?  1—a?
p=0

The radius of convergence is of course r = a, which e.g. follows from the fact that z = a is the
pole, which is closest to 0. We may also easily obtain this result by the criterion of roots.
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(b) If 0 < |z] < @ and n € N, then it follows from (a) that

- too 2p+2
- A A n, —m 1 1-a?™
&) = AVIPIARRD Srriis wrak
22—la+-]z+1 p=0
a
too 2p+2
_ 1 l-a¥® p+n+z 1=a®7
a?  1—a? 1-a% ’
p=0
which we may reduce to the Laurent series

(a2 +1) (1 - a?+2)

2P,

ntl 2p+2+42n +o
1 1—a? 1
— . P .
f(Z) - Z aptn 1—a2 Z Z aptn
p=—n p=n

although this result is not much nicer.

We know that the residuum is given by p = —1, so

1 1—a?n

ar—1l 1—¢qg2°

res(f;0) =a_1 =

1—a?
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(c) If we put z = €', then

cosnv = % {e™ 7m0}

and dv

iz

12

Then we get by insertion, reduction and an application of the residuum theorem (with the two
poles z = 0 and z = a inside the unit circle |z| = 1),

27
/0

1+ a? —2a cosv

™
a

A A

dz

f{d_l l+a?—a(z+21)

cos(nv) 1
2
1 1 "4l
574 S s iz
b lEl=1 T z2—(a+—>z+1
a
1 1—a?" . A A
a1 1 —qa2 +z131t 1
P
a
1 1—a2" 1 a®+1
a® 1—a? a® 1—a?

4{

}:__

2ia

s

a’ﬂ

12

-2mi {res(f;0) +res(f;a)}

1 1—a? 1 a"+a™™

a® 1—a? a
a— —
a
1—a? —qg?" -1 a™
. =27 .
1—a? 1—a?

21
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Example 2.8 Given the function

1— ei2z
—Q

f(2)

z
(1) Prove that f has a simple pole at z =0, so we have for z # 0,

f2) ="+ o),

where g is an entire function, i.e. analytic in C.
Find the residuum by.

Consider for r > 0 the half circle v,, given by the parametric description
'yr(t):reit, 0<t<m.

(2) Prove that

(2)dz — bymi forr — 0.
Tr
(3) Prove that
/ f(z)dz—0 forr — +oo.

"

Figure 1: The curve I'; g.

Let ' p = I + 11+ 111 + IV denote the simple, closed curve on the figure, where II = g and

IV = —~..

(4) Compute
§ fea
FE,R

and prove the formula

400 . 2
/ {smx} de=T
0 X 2
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1) It follows from the Laurent series expansion

1 2z 1 +°Oin n ,n
fz) = 2—2{1—6 }:Z—2 1—25-22’

n=0
1 ™= n
= —{1=-1-92 Cgn+2 n+2
22{ “‘*Zz)(nw)! :
245 a0
— —_— - . -z, z ,
z — (n+2)!

that f has a simple pole at 0 and that

“+oo .n

i
=4 — 272" e C,
9(2) HZ:O mro U
is an entire function, and that
res(f;0) = —2i = by.

2) When we use the parametric description of the half circle, we get

- /‘{_%W(Z)} dz:/oﬂ{_%'ireit}dt-i-fwg(z)dz

f(z)dz 8 ;
2/;dt+/rg(z)dz:27r+/ 9(z) dz,

T

where 2w = —2¢ - im = by - im.

In particular, g(z) is continuous, so |g(z)| < ¢ for |z| < 1. Therefore, if 0 < r < 1, then we get the
estimate

/g(z)dz <c-wr—0 forr — 0+.
It follows that
lim (2)dz = bymwi = 2.

r—0+ o

3) Assume that r > 0 is large. It follows from
e?* = exp(2ir - (cost + i sint)) = exp(—2r sint) exp(2ir cost),
and r > 0 and 0 < t < 7 that —2r sint < 0, hence
|ei22’ < for z € T,.

This implies the estimate

T1+1 2
/ f(z)dz‘g / —Z -rdt’:—ﬂ-—>0 for r — +o00.
Yr 0

T T
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4) Now, f(z) is analytic everywhere inside I'. g, so it follows from Cauchy’s integral theorem that

R 1— e2im —eq_ 62“:
0:/ f(z)dz=— f(z)dz+/ ——dr+ (Z)dz+/ dz.
Te.r € z TR

2
Ve -r 7T

Since cosine is an even function and sine is an odd function, it follows by the symmetry that
R 2ix —c 2ix
1—e 1—e
c X _R X
R1—cos2x R sin 2x 1 —cos2x ~¢ sin 2%
L[y, e, i, [,
e X e X _R X _R X

2/R1_C282xdx:2/R{Sinx}2dx.
€ xz € x

Then by insertion and taking the limits ¢ — 0+ and R — +o0,

R i 2
0 = — | f(z)dz+ (z)dz—I—Q/ {bmx} dx
Ve TR € z

oo (sing ) 2
— —14+0+2 dx.
0 X

This limit is of course also equal to 0, so by a rearrangement,

400 . 2
/ {smx} dr— T
0 xr 2

o
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3 Improper integrals in general

Example 3.1 Compute the improper integrals

e x 1 o z )\ 1
. 22 1 exp {E2——|—1 COS (EQ——i—l dm, and . 22 1 exp 22 1 sin $2——|—1 dx.

When we split into the real and the imaginary part, we get

1 x o1

T = +1
r—1 241 22 +1’

so it is quite natural to consider the analytic function

Fz) = -2 eXp( 1i>, for z € C\ {—i,}.

T 2241

1
- — 0 for z — oo, there clearly exists an R > 1, such that we have the estimate
z—1

Since

2
If(2)] < W for [z] > R.

Then the assumptions of an application of the residuum formula are satisfies, so we conclude by the
linear transform w = z — i that

/+°° 1 ) y o 1 1 )
—— €X X = T - Ies ex )
e X241 Pl 211 9P\ )0
1 1
- 9. S —):0].
Uy res(w2+2iw exp<w>, )

Now, wg = 0 is an essential singularity of the function

1 1
w? + 2w Py )

so in order to find the residuum we shall expand into a Laurent series from wy = 0, then perform

a Cauchy multiplication and finally determine a_; by collecting all the coefficients of —. When
w

0 < |w| <2, we get

1
w

1
Since we have separated the factor —, it follows that a_ is equal to the constant term in the product

of the two series, i.e. m = n. Thus
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and we conclude that

oo x 1 . 1
[m T2 &P <—x2+1) {cos (—x2+1> -+ sin <—$2+1)}d9§
M| T+ _ o1
:/_Oo 2 exp(x2+1>dx:27ma_1:ﬂ{cos§+zs1n§}.

When we separate the real and the imaginary parts, we get

LS| T 1 _ 1
n x2+lexp o cos P d:r—7r-cos§7

and

T T . 1 1
n x2+1exp 1 sin O dz::7T~sm§.

ALTERNATIVELY we may use that the function

(w) 1 . 1 1 . 1
- — ex — = —  _ ex —
g w2+ 2w P\ w w(w + 27) Plw

is analytic in C\ {0, —2i}, so if we include the residuum at oo, then the sum of the residues is zero.
Hence

teo T+
/700 332;_1_1 exp (xz——'—i_-l> dx = 2mi - res(g(w) ; 0) = —2mi{res(g(w); —2i) + res(g(w); oo)}.

Here, —2i is a simple pole, so by Rule Ia,
1 1 1 i
st =20 = =t o (1) = 5 o (5)

1
Furthermore, lim,,_,~ exp (—) =exp0 =1, sow =00 is a zero of order 2 of
w

(w) 1 1 <1>
glw) = — - 5; exp({— ),
w 1+_1 w

w

and it follows from Rule IV that
res(g(w); 00) = 0.

Then by insertion,

+oo . . .
1 2 1 1
[ oo () e = mi et o) = e () = {eong v sng

and the results follow as above by separating the real and the imaginary parts.
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Example 3.2 Assume that x > 0. Find the limit value

A
1 1
lim — — — | dt
A—+oo J_ 4 \T+1x t—x

Here we get without using Complex Function Theory,

A A . .
1 1 t—ir—1t—
lim / —— = Vdt= lim i o 7
Astoo J_4 \t+ix t—ix Astoo J_ 4 12+ 22
A A
dt t
= lim —Zix/ S5 (= 20 lim |Arctan | — = —2im.
A—+oc0 _Ate+ 2 A—+o00 )] _4
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Example 3.3 Let a € R be a constant. Prove that the integral

+oo s
I(a) :/ e~ (@Fia)” gy

— 00

is independent of a.

HiNT: We may assume that a € Ry. Denote by C the rectangle of the corners —b, b, b+ ia and
—b +ia. Show that

% exp (—22) dz = 0.
c

Then prove that

a a
/ e—(b+iy)2dy‘ < e—bQ/ oV dy.
0 0

By letting b — 400, prove that I(a) = 1(0).

-05

Figure 2: Example of one of the curves C. Here, a = 1 and b = 2.

Clearly, we may assume that a > 0, because we otherwise might consider an analogous curve in the
lower half plane.

Now exp (—2'2) is analytic in C, so

j{ exp (—22) dz = 0.
c

We estimate the line integrals along the vertical lines by

/a e_(:tb""Zy)zdy’ —
0

Since

a a
/ e‘bzﬁib""’yzdy‘ <e? / eyzdy — 0 for b — +oo0.
0 0
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and since f j;o e~ dx is an improper convergent integral, it follows by taking the limit b — 400 that
+oo s +oo 5
I(a) = / e~ @+ gy — / e ¥ dx = I1(0).
—o0 —oo

Note that we also have

Example 3.4 Compute
+oo s
1(0) z/ e " dx.
—+o0

HiINT: Use that

{1(0)}2 = /:o e dx /+: eV dy = //R e~ (1) dz dy.

Then use polar coordinates.

Since e~ (#*+¥%) > 0 for every (z,y) € R?, and since the function is continuous, all the transforms
below are legal, if only the improper plane integral exists. (The only thing which may go wrong is
that the value could be +00). Hence,

“+o0 “+oo
/ e da - / eV dy = // — (@ +y? )dx dy
— R2
27 +o00 “+oo
/ / " dr df = 27 - {e T] =,

~
—~
(o=}
=
o
I

Example 3.5 Integrate the function et by using Cauchy’s theorem along a triangle of corners 0, a
and a(1 + 1), where a > 0. Prove that the integral along the path from a to a(l 4 i) tends to 0 for
a — +o00, and then prove that

+oo +oo +oo 144 [T
/ e dy = / cos (12) dx + z/ sin (:cQ) dr = R / e~ dz.
0 0 0 V2 Jo

The integrand is analytic, so it follows from Cauchy’s theorem that

0:/ e”2dx+/ ei(a“‘tﬁidtf/ D™ (1 4 ) dt.
0 0 0
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05 v 45

Figure 3: The curve C' when a = 1.

We first consider
@ 2
I, = / et g,
0
Here we get the estimate

|Io] =

2a

It follows immediately that

a(l+i) R
/ e dz— 0 for a — +oo.
0

Then we introduce the substitution u = tv/2 into the latter integral,

I :/ e T (1 4 4) dt.
0

a a _ ,—2a?
/ ei(a27t2)672ati dt‘ S / 672(115 dt = ]‘L < i
0 0

We get here
a a . av2
. 1
I3 = / 62(1+1)2t2(1 +i)dt = (1+1) / e 2 dt = Rl / e du
0 0 V2 Jo
L R . +
e i or a — +o0.

V2 Jo

We finally conclude that the first integral I; is also convergent for a — +o00, and
144 [T
Rl e~ da.

+oo L, +oo +oo
/ e dr = / cos (acz) dr + z/ sin (wz) dox =
0 0 0

V2 J

30
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Remark 3.1 If we use the result of Example 3.4, it follows by the symmetry that

/+°°ei12dx= 1+i_ﬁ
0 vz 2

hence

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b

Llle
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Example 3.6 1) Find the domain of analyticity of the function

L
OR

Ezplain why f has a removable singularity at z = 1.
2) Let Cy g denote the simple, closed curve on the figure, where

0<r<R<+o.

08
0.6
04

T

0.2 02 04 06 08 1 12

-0.2

Compute the line integral

W ¢ RCLE

3) Show that the improper integral

+oo 1
/ —2nx dx
0 x4 —1

is convergent, and then find its value, e.g. by letting r — 0+ and R — 400 in (1).

1) Clearly, f is defined and analytic, when
z€ C\(R- U {0,1}),
and the singularity at z = 1 is at most a simple pole,

Log z  res(f;1) R n

But since

Log z Logl

res(f(f31) = lim 252 = %=,
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it follows that the Laurent series of f from z = 1 is a power series, so the singularity at z = 1 is

removable.

ALTERNATIVELY, both the numerator and the denominator are 0 for z = 1, so we get by ’'Hospital’s

rule that
1
. . Log z .o, 1
/e =y =M =y

so the singularity is removable, and we may consider

Log 2
22 1’ QSGC\(R_U{O,I}),
fz) = .
57 Z:]-a

as an analytic function in C\ (R_ U {0}).

ALTERNATIVELY it follows by a series expansion of
Log z = Log(1 + (2 — 1)) for 0 <]z —1] <1,

that

—+o0

og z —1)ntt
foy=tosz 1 1 DTy

21 241 z2-1

n=1

Here

is continuous in all of the disc |z — 1] < 1, so we conclude again that z = 1 is a

z
removable singularity and that f can be analytically extended to z = 1 by putting

1 1 1
f“)::m{l—w“’}:a

0.2 02 04 06 08 N 12 14 16

Figure 4: The path of integration C, p with the removable singularity at z = 1.
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2) Since we may consider f as an analytic function in C\ (R_ U {0}), we conclude from Cauchy’s
integral theorem that

2) ji‘,‘,R f(z)dz =

x
3) When we restrict the analytic function to Ry, we get a continuous function PR supplied by

x2

1
the value 3 at « = 1. Since we only have Inx = 0 for x = 1, we see that x = 1 is the only possiple

. 1 . Inz ..
zero. However, the value is here 3 > 0, so we conclude by the continuity that — 138 positive
72 —

(and continuous) for € Ry. Then we have the splitting

T lnzx : Inz 2 Ing T lnx
do = —d —d dx.
/0 2177 /0 x2 -1 $+/§ x2 -1 x+/2 2217

The estimate

R
0 < / nml /|1nac|dx——/ (—Inz)dx
TR 1"

(1+In2)=

W W~

(1+1n2) < +oo,

ooluk
l\.’JlH
wlm

1
[~z Inz + 2|5, =
implies that the first integral exists.

. . Inz . ..
It was mentioned above that we could consider P as a continuous function in the closed
T

bounded interval [% , 2], from which we conclude that the second integral also is convergent.

Finally, it follows from the magnitudes of the functions, when x — 400 that there exists a constant
C > 0, such that

“+oo
0</
2

and we conclude that the last integral also is convergent.

“+oo
dac<C/ —dx—C\/_<+oo

Inx
2 —

Summing up we have proved that the improper integral f0+oo dx is convergent.

When we expand (2), then

R 6 5 6
1 Log (R Log(it) : L ,
0 = / - dx+/ Log (Re”) e) ‘Rie" df — / Ogl idt—/ Log (re®) et ag
T 0 0

1‘2 -1 RQ 210 7‘26219 1
R Rlnt—|—2— z z ;
Inx 2 . [7 InR+10 i0 . [2 Inr 410 i0
= ‘/T 1‘2 dl""Z/T Wdt‘f’l/o WRG d0+l/0 W'TG dG,
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hence by a rearrangement,

R R
Inz Int
d ) ——dt
/T 21 ”TH/T 1+¢2

R bt . Ed .
T dt 2 InR+ i : 2 Inr -+ 10 )
= — — — — = R g4 d@ —1 ——=—= " @ d@.
2 /r 1re2 ! o R2e?? —1 ¢ 2/0 1 r2e2i0 "€

By taking the limits » — 04 and R — 400 on each of the terms on the right hand side we get

. . T [foat 7w [T dt T o w2
lim lim — — = — — ==
r—0+ R—-+4oo 2 IS 1 + t2 2 0 1 + t2 2 2 4

and

|¢/2 R o
0

R2e2i0 _ 1 R2 —
R(InR+ 5

" as and global trends.
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.7‘(|ln7’\+§)

1 5 — 0 for r — 0+,
—-r

respectively. Hence, by summing up,

/+°° Inx dr + _/+°° Int it 72
T4 —dt = —.
o r2-—1 o 241 4

Finally, by separating the real and the imaginary parts,

+o0 2 400
1 1
/ ;133 do = 2 og / BT gz =o.
0 1 0

T 4 2 4+ 1

36
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Example 3.7 Given the function

eZ

&)= 1res

(1) Find all the isolated singularities of f in C.
Determine the type of each of them and their residuum.

Given for each r1 > 0 and ro > 0 the closed curve
Yri,re = Irl,rg + IITQ + IIIrl,rg + I‘/rl
(cf. the figure), which form the boundary of the domain

Ap vy ={2€C| —r1 <Re(z) <rg and 0 < Im(z) < 7}.

Figure 5: The curve 4, ,, with the direction given on I, ,, = [-r1,72] and III,, ,,.

(2) Prove that

7{ £(2)dz

71,72

V2
— .
2

(3) Prove that the line integrals along the vertical curves I1,., and IV, tend to 0 for ro and ry tending
to +o00.

(4) Find

+oo e
oo lH4e

1) Since e* # 0 for every z € C, the singularities are determined by

642 - 1= ei(w+2p7r)’ pe Z,
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so the isolated singularities are

(T m
zp:z{z+p'§}, pEL.

We see from
d
= {e¥+1},_, =deP=-420,

that these singularities are all simple poles with the residues

1res(f;zp):_i4 exp (z{%—l—pg}) Z—g(l—i—i)ﬁxp (ig-p>, p € Z.

2) We have inside the curve 7, , only the two poles zy and z1, hence by Cauchy’s residuum theorem,
z 2
f 4 = 2omi {res (f;z0) +res(f;21)} = 2mi {—% 1441+ 2)}
¥

1 4 e
oo [ V2) V2 T
8 2 V2

1,72

3) We may choose the parametric descriptions of the vertical paths of integration in the form
z(t) = r +it, t € [0, 7], where either r = rq or r = —r.
If r =79 > 0, then we get the estimate

Q eratit o2
" (2)dz S/o T ctratant dt < er2_1—>0 for ry — +oo0.
If r = —ry <0, then we get instead
™ o—T1Fit —
o (2) dz S/O 1 f o—trirait dt§W~1_6_4rl —0  forr; — +oo.
4) Finally,

T2 et
/] f(Z)dZ:‘/_Tlmdx’

71,72
and
-7 T LU T2 T
ere €
/ f(z)dZZ/ mdﬂﬁ:/ Ta
11, ra +etre -, Lte

It follows from (2) and (3) that

2 “+o0 x
£7r: lim % f(z)dz:2/ c 7 ,
ri,r2—too [ o 1l4+et™
hence
/+oo et \/5
— .
oo Lltet® 4
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Remark 3.2 It is possible to find the value of the improper integral (which clearly is convergent)
without using the calculus of residues. First we get by the substitution ¢ = e*,

+oo e’ o0 dt
o 1€ o 1+t

Then we decompose the integrand in the following way,

1 1 1 1
at+0b ct+d

2402t 41 12 —V2t+1’

hence

H
|

(at+b) (tz—\/itﬂ) + (ct+d) <t2+\/§t+1)
= (a+O)P+(—V2a+b+ V2e+d)t* + (a—V2b+c+V2d)t + (b+d).
Weget a+c=0,ie.c=—a,andb+d=1, so
—2V2a+1=0 and  —V2b+V2d=0.

It follows that

1 1
0= —==—c¢ and b=d= _,
2v/2 2
thus
11 2t + /2 L1 1 1 2t — /2 L1 1
L+t 4v2 24V2t+1 4 24241 4V2 2-V2t4+1 4 2—\2¢+1

Finally, we get the primitive

/{ 2 + /2 2% + 12 }dt:m(ﬁ—&—\/ﬁt—i—l)_)o’

24241 2—\2t+1 22— \2t+1

for ¢ — 04, and for ¢ — +o00. We therefore conclude that

oo e oo gt 1 [T 1 1
74 dx = —4:— + dt
o 14ete 0o 1+t 4 /o 24+V24+1 2—V2¢+1

/+oo 1 N 1
0 1)\? 1\? 1
t+— | + t-—) +5

1
V2 2 V2
Arctan (\/515 + 1)+ Arctan (\/it -1 ]:O

.
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Example 3.8 Denote by A the domain
A=C\{z€C|Re(z) =0 and Im(z) < 0},
and denote by /z the branch of the square root which is analytic in A, and which is equal to the usual

real square root on the positive real axis R .
Furthermore, let

FT,R:Iy-,R+IIR+III7-7R+IV;» fOT’O<’/‘<1<R,

denote the simple closed curve on the figure.

25

LI

Figure 6: The closed curve I', g med I, g = [r, R] and the circular arc ITp with a direction, (and
II1, r and IV, follow in a natural way). The pole i of f(z) is indicated inside I, .

1
NAEESE
1) Prove that

f(z) =

™

ﬁR f(z)dz 7 (1 —1).

2) Prove that the integrals of f along the half circles I1g and IV, tend to 0 when R tends to oo, and
r tends to 0.

3) Prove that the integral
400 1
——dx

s convergent and find its value.
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1) The only singularity of f(z) inside I',. g is the simple pole z = 4, so it follows by Cauchy’s residuum
theorem that

. 1 ) - 1 . 1
fi—‘T,R f(Z) dz = 2mires <m s Z) =2m lllgm = 271 - Tzl
V2
1—1 s

= T 7 \/_( —1).

2) We estimate the integral along the curve I'V;. of the parametric description z(t) = re!(™=Y ¢ € [0, 7]
and 0 <r <1, by

rdt = T —0 for r — +oo0.

1
W VEERD S e T T

Along med 1z we choose the parametric description z(t) = R- €', ¢t € [0, 7], R > 1, and then get
the estimate

/ \/_ = };2\/_}_%1 —0 for R — +o0.

I \/_ (Z2+1
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3) We obtain along I11, g,

dz _1/7’4 dx _l/R dx ——i/R dx
e V2 (E2+Y) i) g ] (22 4+1) i), Vo (22 +1) r vV (x24 1)
Taking the limits » — 04+ and R — 400 and applying the results of (1) and (2) we get

N dx T .
(1-1) ; WZ—QU—Z):

hence

Foo dx T

o VE @+l V2
ALTERNATIVELY we may change the variable to t = \/z, z =2, t € R,
oo du o at
— =2 —_—.
0 VvV (x2+41) /0 41
Then we decompose in the following way,

1 1 1 1

Lttt (#2241 =20 20y (yan® (B4 V2E+1) (2 - V2E+1)
at+b ct+d
2+V2t+1 22— V2t+1

hence

»—
|

(at+b) (tz—\/itﬂ) + (ct+d) <t2+\/§t+1)
= (a+O)P+(—V2a+b+ V2e+d)t* + (a—V2b+c+V2d)t + (b+d).

We get a + ¢ =0, thus c= —a,and b+d =1, so

—2v2a+1=0 and  —v2b+V2d=0.
Then
1
a:ﬁz—c and b:d=§,
and
1 1 2t + /2 1 1 1 2t — /2 1

1
— . + - _ . + = . .
L+t* 4v2 24V2t+1 4 242t+1 42 2—V2t+1 4 2—2t+1

Finally, we see that the primitive is given by

2 + /2 2t + 2 t24+V2t+1
- dt=In[—Y=""") >0,
24+2t4+1 2—V2t+1 2 —V2t+1
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Complex Funktions Examples c-7 Improper integrals in general

for t — 0+, and for ¢ — 4+00. We therefore conclude that

“+oo —+o0 —+o0
1 dt 1 1 1
——dx = 2 — =z + dt
0 \/I(:C Jrl) 0 1+¢ 2 Jo t2—|—\/§t+1 t2—\/§t+1

- 1/4-00 1 N 1
2 Jo 1)\? 1\? 1
t+— | + t—— | +

V2 V2 2
= V2 [Arctan (\/it + 1)+ Arctan (\/ﬁt — 1>}ZO
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

4 Improper integral, where the integrand is a rational func-
tion

Example 4.1 Find the value of the improper integral
/ teo dy
oo T

1) It is possible to compute the integral by a real decomposition; but this is not an easy method. We
shall here shortly sketch it in order to demonstrate the difficulties connected with it: By “adding
something and then subtracting it again, followed by factorizing the difference of two squares” we
get

2
x4:x4+2x2+1—2x2:{x2+1}2—{\/ix} :{m2+\/§x+1}{x2—\/§z+1}.

We conclude that there exist real constants A, B, C' and D € R, such that

1 1
zt+1 {x2+1}27{\/§x}2:{m2+\/§x+1}{127\/§x+1}
Ax + B Cx+ D
22422 +1  22—22+1

Then by the usual decomposition,

1 1 1 1

ﬁa - §a - ﬁa - §a
1
and we find a primitive of ——— in the usual way.
zt+1
2) A wvariant of the method of decomposition above is to note that all four poles z; are simple, so

L _res(fim) | ves(fiz) | ves(fiz) | wes(fiz)

zA4+1 z—2 Z— 29 z— 23 z— 2
where
1 20 1
res (f; 2) = g = 2 = 1 2,
3 1 3
dzy 4z, 4

by Rule II. We see that the z; are complex (they occur in complex conjugated pairs), so the terms
shall afterwards be paired together in the same way, before we find the real primitives.

3) Finally, we show that it is much easier to use the residuum formula. We shall first check the
assumptions. The integrand is a rational function with a zero of order 4 at oo and no pole on
the real axis. This implies that the improper integral is convergent and we can find it value by

computing the residues of the poles in the upper half plane. The four simple poles are exp (”%T),
p=1, 3,5, 7, of which only

<i7r) 1+14 <3i7r) -1+
exp| — | = —= og exp| — | =

1)
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

lies in the upper half plane.

If we as above use Rule I with A(z) = 1 and B(z) = 2* + 1, where B’(z) = 42®, then we get for
any of the poles zy that

. - A (Zo) - 1 - 20 - 1
res (f} ZO) - B (ZO) - 42(3)’ - 4261 - 74 20,
because z§ = —1 for all of them.

Then by the residuum formula,

/+°° dx ori | e 1 1474 s 1 141
— o . b
oo T4 2417 2 22417 2

x
Example 4.2 The improper integral fjoos oY dx is not convergent. Discuss what happens if one
x

nevertheless use the residuum formula.

The only singularity of the analytic extension of the integrand in the upper half plane is the simple
pole at zy = i. Here we have

z . .z 1
res| ——;i) =lim— = —,
22 +1 z—i 2z 2

so if we unconsciously put this into the residuum formula, then

“+oo
“/ de:%ri-res L;i =i 7.
e T2H1 2241

This is of course not true, because if we could attach the improper integral a value (it is not convergent,
so one should at least use “Cauchy’s principal value” in order just to get a little sense into this
expression), and then it is obvious that a possible value should be reel and not at all imaginary.
The example shows that residuum formulee formally often can be applied in cases, in which their
assumptions are not fulfilled. If so, they will usually give a wrong result.

Example 4.3 Compute
teo dx Feo x? teo dy
O B S R B R O s
—oo (14 22) o (14 22) oo (1+22)

(a) The integrand has a zero of fourth order at oo, and since (1 + :102)2 # 0 for every z € R, the
integral is convergent. The integrand has the two double poles +i, of which only +i lies in the
upper half plane, so

T da _ 1 _ 1. d 1
——— = 2mi-res| ——— 1| =2mi-— lim — :
—oo (14 22) (1+ 22) 1 z2—idz | (2 41)?
-2 —4mi
= omilim——— = =T
=i (z+4)3  (26)3 2
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(b) The difference of degrees is 2 where the denominator is dominating, and the integrand has only
the singularities +¢ (double poles, which do not lie on R). Hence, the integral exists and

+o0 1‘2 2,2 1 d 222
/ ———=dr = 2mi-res| ———=;1 :2m’~—lim—{7‘2}
oo (1+22) (22+1) W a—idz | (2 414)
9 lim 2z 222 - 21 242
= T — = 2T —

- (2i)2 1 (22')3 oo
- _“{(22')2 ) (2@3} 2

~

ALTERNATIVELY, we of course also have
? 2 +1-1 1 1
1+22)2 (1+22)° 1+a2 (142272
and then it follows from (a) that
oo 2 too oo 1 T T
/Oo 7(14—332)2(&_/00 mdm—[m 7(1—|—x2)2 dl‘:ﬂ'—§ =3

(c) The integrand has a zero of order 6 at co and no singularity on the z-axis, and poles of order 3
at z = 4i. Hence,

teo dx , 1 _ S R 1
———= = 2mi-res| ————;i | =2m 5 lim—— < ——
o (14 22) (22+1) 2 s=idz2? | (2 414)

. d -3 . (=3)(—4) 127 12w 3w
= i lim — =7 lim - = = =
z—i (2 4+1)5 (2)5 32 8

Example 4.4 Prove that

o0 2 2 “+00 _ 1 4 2
(a) / L _”‘f, (b) / Tl AT T
oo Xt H1 2

2
x
(a) The integrand pranE] has a zero of second order at oo, and no singularity on the z-axis. The
x

poles in the upper half plane,

141 d -1+
z1 = an 2o = ,
1 /B 2 NG
are both simple with z1 - 20 = —1, so

o0 x? ) ‘ 2,2 . Z2 .
. 5(;4——’—1 dr = 2milres Z4—H ;21 + res Z4 1 )
1

_ gm{hmz_?ﬂm i)ZE(L
z—z1 423 zoza 423 4 \z
T l4i —1+44i]  m 2 w w/2
‘5{\/5 B }“_' V2
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

(b) First we note that we have a removable singularity at = 1, because

i 33—1_1_ 1 _1
o175 —1 o—1B5z% 5

either by I’Hospital’s rule, or by a simple division,

r—1 1 1 . 1
= — = or x — 1.
-1 a2t +34+242+1 5

There is no other singularity on R than the removable singularity at z = 1, and the integrand has
a zero of order 4 at co. We therefore conclude that the improper integral is convergent. The poles
in the upper half plane,

247 damw
z1 = exp = and Zo = exp = )
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

are both simple, so the value of the improper integral is

/+°°x—1d - z—1 n z—1

T =2midres | ——; 2 res [ ——; 2

e TP —1 B-1" P17
z

[ 22—z . 2=z 21 o o 9
- B S S T )
4am um n i 4im
e — ) —e — e — | —e —
Xp 3 Xp 3 Xp 3 Xp 3
211 271 271 211 L. 27 47 . 2w
= —exp|— ) —exp| — = — ¢ —-2{sin— p, = — sin —.
5 5 5 5 5 5 5
Remark 4.1 Since

T 1+45 T \/10-2V5

cos — and sin — =

5 4 5 4 7

it follows by insertion that

oo 1 A .om T T /
/;OO mdl’ = E'QSlng'COSg:E‘<1+\/5)' 1072\/5
= o V1048V5=21/10+2V5,

Example 4.5 Compute

+oo d +oo .2 1
(a) / T neN, (b / T e,
e @D o P

In both cases we see that the improper integrals are convergent (the denominator is dominating, and
the difference of the degrees is at least 2, and we have no singularity on the real axis R), so the values
can be found by means of the residues in the upper half plane.

(a) Since z = i is an n-tuple pole, we find

oo dx ) 1 _ _ 1 N Nen
/;OO W = 27TZ-1“€S <W,Z) :2772' (n—l)' ilig;dzn_l {(Z"‘Z) }
271, 1
= 0 (o) (=n—1)---(=2 N lim —
B 27m‘.(—l)”_l-(2n—2)!_ 1 .L_ T 2n — 2
N (n—1)!(n—1)! 22n—1 j2n — 92n—2 n—1 '
b) If zy is one of the simple poles, then z4 = —1, so the residuum is given by
0
22 +1 2 +1 20 ; o
res (24—_’_1, ZO) = 4,2,’8 :—Z (Zo+1)
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

Then by using the symmetry, (the integrand is an even function),
oo g2 1 [T z2 41
[ wmite=g) | e
. 2241 s 22 +1 3T
= m {res <Z4—+1;exp (z Z)) + res (m;exp (z Z))}
™ T T 3T 37
= 1 {eXp (z Z) (eXp (z 5) —1—1) + exp (z I) (exp (z 7) +1)}

g T . . 49 - i s
Remark 4.2 It is possible, though far from easy to compute the value of the integral by only
using the known real methods of integration from Calculus, i.e. by a decomposition. We shall here
only sketch the method.

If we only can factorize the denominator, the rest is standard, though still difficult. The trick is
here the usual one: Add something and then subtract it again,

I+d)(1+d)+(-1+9)(1 -9} =—

x4+1:x4+2x2+1—2$2:(332—1—1)2—(\/536)2:(332—&—\/5364—1) (mQ—\/ix—i-l).

Now we have written the denominator as a product of polynomials of degree 2, so we can in principle
decompose and then compute the integral. However, the factorization of the denominator shows
that this will be fairly difficult to carry through in practice. ¢

Example 4.6 Compute

+oo dx +oo zz
(a) /m N () /W e

The denominator is dominating with at least 4 degrees in the exponent, and there are no poles on the
z-axis. Therefore, both improper integrals are convergent, and we can compute them by a residuum
formula.

(a) The integrand has in the upper half plane the three simple poles

14 26
(%) (13) = 5
exp (i — expli—=) =1 exp|i—|.
PG ) Plr5 ) P 6
Let 2o be anyone of these poles. Then in particular z§ = —1, and it follows that

1 1z 1
res| —— . 2 = = — = —— 2.
1+26"7°) 7628 628 67

By insertion;

/+oo dz = 2miqres ;'ex (z E) + res #Z + res ; X Z5_7T
o 118 1420 PG 1+26° 1120 P\
; T 51

——ﬂ—i{2isinﬁ+i}—2—ﬂ
3 6 R

I
|
[N}
SE
<
—N
@
"

e}
—
~

|

N—
+
~.
+
@
[

e}
N
-~

|
N—
—
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Remark 4.3 The denominator can be factorized in the following way

1+25 = (1+332) (x4—x2—|—1): (1+x2) (x4—|—2x3—|—1—3m2)
(z®+1) ((x2—|—1)2—(\/§x)2) = (2 +1) (I2+\/§x+1) (.rz—\/gx—i-l),

so we can n principle decompose the integrand and then integrate in the usual way known from
Calculus. However, the coefficients clearly show that this will be very difficult to carry through. ¢

(b) Here we must not forget what we learned in the “kindergarten”:

+oo 2 +oo 3
/ T e = 1/ RGP (+) = % [Arctan (x3)}f°° =

™
oo 142 3/ o 14 (23)° 3

ALTERNATIVELY (and this time far more difficult) we see that we have the same simple poles as
in (a), and then we get by the general expression of the residuum at the pole zg, where 2§ = —1,

22 22 28 14
res| ———%:2 | =<5 =76 = 7%
14267 625 62§ 67"
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

hence

/+Oo$_2dx = 2w {re ( G exp( 7T))—i—res <Z—2.i>+res (Z—z.exp <z5£>>}
oo 1S 1426 6 14267 14267 6
2mi LT 3 b7 ™oL 0
= ?{exp(zE)Jrz +exp(27)}—§{zz+z}—§.

dx
* 1+a8

Example 4.7 Compute f

1
The function 157 has a zero of order 8 at co and no singularity on the real axis. Hence the improper
z

integral is convergent, and its value can be found by the residues at the poles in the upper half plane.
All poles are simple, and we have in the upper plane the four poles

z1 = ex <ZI> Z9 = €eX 13—7T z3 = ex 25—7T z4 = €x 17—7T
1= P 87 2 — p ] ) 3 — P S 3 4 = p ] .

We have for every pole zj that z7 = —1, so

1 1 1
res| ——; 2k | = 0= = — < 27.
1+28"7%) 787 87

Then by the residuum formula,

oo . 1 2mi [ . 0w . 37 T LT T
= 2mi Azt 2zttt =—-2 sngrsm— :—°QSIHZ~COS—

oo 1428
/1+
= —\f CO” 1+—

ALTERNATIVELY, it is possible to decompose. Here, we shall only show how one factorizes the denom-
inator 1 + z%:

(2% 420" + 1) — 22" = (2 +1)° (\/— ) = <x4+\/§x2+1)<z4—\/§x2+1)
(a* 4207 +1) = 2= V)22 { (o + 207 +1) - (24 v2) 2%}

«
e e N (R )
(x2+\/mx+l> (mQWerl) (z2+mx+1> (zQ\/mxﬂ).

Obviously, the following decomposition becomes very difficult, although it can in principle be carried
through.

1+ 28
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Example 4.8 Compute
+o0 +oo 2
rdx rodx
(a) / PRI (b) / T o2 a € R+.
oo (22 +4x+13) o (22+a?)

(a) It follows from
2?4 4o+ 13 = (z +2)% + 3%,
that the integrand has the double poles —2 4 3i, which do not lie on the real axis. The difference

of the degrees is 3 with the denominator dominating, so the integral exists, and the value can be
expressed by the residuum at z = —2 + 3::

Feo xdx ) z )
—————— =2mi-res | ———————; —2+3i
—oo (22 4+4x+13) (22 +42+13)

2 I z ori i 1 2z
= — 1m — (5 ( — 4T 1m - -
1! z——2+3i dz | (2 + 2+ 3i)? r——243i | (z+2+20)2 (2424 3i)3

= ] ! 2(-2+42i)\ _ 2mi . o
= 2mi { (61)2 - (6)3 } BRGIE {6i+4—6i} = ~5

(b) Here we have the double poles +ia ¢ R, and since the difference in degrees is 2 with the denom-
inator dominating, it follows by the symmetry that

o0 1‘2 1 o0 $2 ) Z2 .
———dr = ———dv=mi-tes | ————;ia
o (z2+4a?) 2/ w (224 a2) (22 +a?)

i 2 2’ s 2z 22°
= m lim —S———= b =mi lim —
e dz (z+1ia)? [t (z4+1ia)?> (2+1ia)?
i

+
“le ) 5 {8

Example 4.9 Compute
+o0 2 +o0 2
Tt —x+2 x©—1
————d b ————du.
(@) /_OC 11022+ 9% () /0 szt

22— 242
4 +1022 +9

22 =-5+V25-0=—-5+4,

i.e. the simple poles are

(a) The integrand has a zero of second order at oo and its poles are given by

31, —3i, i and — 1.
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None of these lies on the z-axis. Since f(z) is analytic outside the poles and since we have the
estimate

()] < %

for [z2| >4 og Im(z) >0,

we conclude that

o0 _ D)
/Oo L_T% dx = 2mi {res(f;1) + res(f;30)}

281 (224 1) (2 + 39) 2 -8 —8 - 6i
5
{3 3i4+9+31—2} = 17;

. 22 —z+2 . 22— 242 (-1—-i4+2 —-9—-3c+2
mqlim ———— 4+ lim —————— > = 270

ALTERNATIVELY, one may apply the traditional real method of integration, by using that we have
proved that the integral exists. In particular

/+°° —xdx 0
oo A 102249 7

because the integrand is an odd function. Then

Too 2 42 Foo 2 +2 1 [T dx 7 [T dx
ETETE g = dr = = =L T
oo 4102249 oo (@2 4+9) (22 +1) 8 J oo #2+1 8 J)_ 2249
1, T _1n s
8 3-8 24 127

(b) The difference of the degrees is 2 where the denominator is dominating, and the denominator
is furthermore positive for every real x. Hence, the improper integral is convergent

. Since the
integrand is an even function, it follows by the symmetry, followed by an application of the residuum
formula that

+oo .%'2—1 1 +o00 .’172—1
— de—- e — i y .
/o 4 sa2 44 2/_C>o @ 5 0 (@2 4 1) 20 = i Ares(fid) Fres(f:20)}

= il e e e - e oo )
- {53 w

ALTERNATIVELY we decompose:

+o0o I271 +oo I271
o xt+5x2+4 o (224+4)(22+1)

2/*00 dx +5/*"" dx

3 )0 x*+1 3), 22+4
2 15 A 5 2\m™ mw

— > Arct 5o Arctan (2)] = (2-2) 7 =T

[ 3 rcanx—|—2 3 rctan 5 }0 (6 3)2 D
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Example 4.10 Compute
(@ /+°° dx o) /+°° dz
“ o W24+ 1 oo (@2 1) (22 +4)

1
(a) The integrand —————— has a zero of second order at co and the poles
224241

1 V3

Hence, the improper integral exists, and we may find its value by means of the residuum at

1 3
—5 +1 g, i.e. at the pole in the upper half plane:
T dr 1 1 V3 1
_d v L VY
/_OO 2 rotl ™ res<z2+z+1’ 2t B YAV PR

. 1 211 2w

= 2 ——— = ——— = —

-14+iV/3+1 V3 V3
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ALTERNATIVELY, the traditional computation gives

1\
oo dx oo dx 1 T+ 9 T 2m
- = ——————5—— = —= | Arctan =—=—.
o PPl 1 3 \/§ \/§ \/§ V3
Try) Ty 4 1 /1 1
1
has a zero of order 4 at co and the simple poles +i and +2¢ ¢ R.

b) The int d —5————
(b) The integran (1)
Hence, the improper integral exists, and its value can be found by means of the residues at the

poles in the upper half plane. We get

/f: ST g = { (WM ? Z’) e (m ; 2") }

o L1 1 1) «
= Z7Tr B — B — =T —_ — — = —.
2i-3 ' (—3)4i 3 6 6

ALTERNATIVELY,
/+°° dx 1/+°° dx 1/+°° dx 1 Arct lA con oo
= = S ——— = = |Arctan z — — Arctan —
oo (@2 +1) (22 44) 3 ) 22+1 3 ) o 2244 3 2 2]
1 { 7T} T
= — m— — = —.
3 2 6
Example 4.11 Compute
+o0 oo
dz dz
@ [ e O e .
oo X242 42 oo @2+ 1) (224224 2)
1 . )
(a) Here ————— has a zero of second order at co and simple poles at z = —1 £ i ¢ R. Hence,

22 4+22+2
the improper integral is convergent, and its value can be found by a residuum formula. However,

the easiest method here is actually the traditional one,

oo dx oo dx
—_— = ————— = [Arct D]Fe = 7.
/Oo $2+2$+2 [oo (.’I,‘+1)2+1 [ rc an(a:Jr )]—oo e

For comparison we get by the calculus of residues,

1

oo dx 1
/ - = 2mi-res| ———; —1+¢) =2m lim ——
o 24242 2242242 z——1+iz+ 1414

211 2711

—1+i+1+di 2
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(b) The integrand has a zero of order 4 at oo, and the simple poles +i, —1 + 4 ¢ R, so we conclude
that the improper integral is convergent, and its value is given by

/+°° dzx
oo (@2 1) (224224 2)
= 2 {res ((z2 +1) (zi +22+2) ; Z) e ((z2 +1) (z2 +22+2) ; —u)}

1 1 1 1 1
= 2mid—. — - 4=
m{% —1+2i+2+{(—1+i)2+1}-2i} 7T{1+2i+1—2i}
1-2i+1+42 27

144 5
Example 4.12 1) Ezplain why the improper integral

/+°° z2dx
w (@2+1)(z2+4)

is convergent, and find its value.

2) Compute the complex line integral

% 22dz
=3 (22 +1)% (22 + 4)

1) The integrand is a rational function with a zero of order 4 at oo and with no poles on the real axis.
The poles are z = +i (double poles) and z = £+2i (simple poles), so the integral is convergent, and

its value can be found by a residuum formula,

oo 22dx , 52 . 52 ‘
/ﬂm @@y {res ((22 F1)2 (22 +4)] Z) e <(z2 +1)2(22+4)] 2Z> } ‘

Here we get straight away,

. 22 , 1 I d { 22 }
res 1|l == 1lm—< ——55—<
(224 1) (22 +4) 1 z=idz | (z41)% (22 + 4)

lim 2z 222 _ 2222
a—i | (240)2 (2244)  (249)3 (2244)  (244)2 (22+4)°

2 =2 ()2 2 L2 2
C (2033 (26)3-3  (20)232 4.3 8-3 9-4
i 5i
=—(-6+3-2)=——
36( i ) 36’

and

22 , . 22 —4 41
res 5 ;20| = lim 5 — = CTET:L
(22 +1)? (22 +4) =2 (224 1)° (2 42i)  (=3)%-4i 36
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so by insertion,

/+°° r2dx 5 z{ 5i N 42} ) 1 T
=2Mi ——= + — =2 — = —.

coo (224 1)% (22 4 4) 36 36 36 18

ALTERNATIVELY, we may first decompose to get

u A B C

wr12(utd) utd nil @r?

Here we immediately get

4 4 11
A= . d C=_—"=__.
(32 9 ™ 3 3

Then by insertion, rearrangement and reduction,

B u LA 1
u+l  (u+1)2(u+4) Yu+4 3 (u+1)?
1 1
- . - 4 1)? 4
A CESVIONwY {9u+4(u+1)"+3(u+4)}
1 1
= - {4 1)? 412 1
9 i Py et DT+ D)
4 w4143 41
9 (u+)(ut+4) 9 u+l’

Then put u = 22 to get

+o00 $2
/ 5 dx
—oo (22 4+1)" (22 +4)

4/+°° dx 4/ < dx 1/“’o dx
9. 22+4 9) o 22+1 3] (22 + 1)°
4 1 [t d
== {Arctan( )} Arctan T|t2 - —/ —x2
9 3/ (@2+1)
_2m 1/+°° dx
9 3 . ($2+1)2
We can now compute the integral
/+OO dx
oo (22 41)°

in a number of ways:

a) We get by the calculus of residues,

TO dx _ 1 , d 1
/ — = 211 - res Qs l] = 211 lim D)
e @11) (=2 +1) T

i e R <‘<2§>3> s it
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

b) ALTERNATIVELY, we get by a partial integration
+o00 d +oo +o0 2 +002.T2+1 -9
/ _x[i] +/ xix?dx:/ 2t -2
oo 241 1] ) (2241) —oo (22 41)

“+oo “+o0
_ 2/ dx _2/ dx .
e X211 o (2241)

and then by a rearrangement,

/+°° dx _1/‘”'00 dx T
coo (@241 2 ) o 22412

Finally, by insertion,

/+°° x? 2
5 de = — —
o @D (221 4) 9

s m

o

2) Since all pole lie inside |z| = 3, and since we have a zero of order 4 at oo, we get by changing the
direction on the path of integration,

]{ 22dz f* 22dz o res( 22 oo)
o= (22 +1)% (22 4 4) o= (22 +1)% (22 4 4) (22 +1) (2% +4)
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

Example 4.13 1) Find all complex solutions of the equation

2+ 522 +4=0.
2) Prove that the improper integral

teo g2 1
T3 dx
0 x* + 5x° +4

is convergent, and find its value

1) We get by the factorization
0=z+52+4= (22 +1) (22 +4),
the four roots
i, —1, 21, —2i.
2) The integrand is a rational function with no pole on the z-axis and with a zero of second order

at oo. Hence, the improper integral is convergent. Since the integrand is even it follows by a
reflection and the residues at the singularities ¢ and 27 in the upper half plane that

oo g2 1 1 [T 222 -1
/ ﬁda?:—/ 5
0 z* +5z% +4 2 )_ o x*+52%+4
27 222 —1 . 222 -1 .
B T{res<z4+5zz+4;z>+res<z4+522+4;22>}
= m’{lim—zzz_l bt 2L }
25423 + 10z 2—2i 423 + 102
(1 —-2-1 1 —-8—-1 1 9 T
- 7”{2'4+1o+%'16+10}:ﬂ{_§+ﬁ}:1

ALTERNATIVELY, the traditional method of decomposition gives that

222 — 1 _ 222 — 1 _ 1 n 3
ri+5224+4  (22+1)(22+4) 22+ 1  a2+4’

hence

/+°° 222 — 1 J /+°° L +/+°° 3 4 T,
— 5 dv = — ———dx —dr = ——
o x*+5x244 o 241 0 x2+4+4 2

N W

N}
13
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Example 4.14 Prove that the improper integral
+oo 1 2
/ 1THT g
oo 142
is convergent, and find its value.

We estimate the integrand for |z| > 1 in the following way,

12
L+ =
1+2% 1 <) 2
0<gla)i= oy == <2

'_1+x4 1:21 1 4 72’
+(;)

1
Since the improper integral f 1+oo — dx is convergent, the given integral is also convergent.
x

-2

1 7
VoY)

Figure 7: The curve C'r for R > 1 and the singularities £

We can now find the value of the improper integral as a Cauchy principal value via the residuum
theorem.

The denominator has the simple poles at the points
w=ep(iT+p3),  pe{01,23}

where the former two lie inside the circle of integration C'r. We get by a small computation

1 1+2
—1—= 1+, p=0,
1+ 22 1 ) 4 V2
res (9(2); 2p) = 13 __ZZP(I_'_ZP): - .
P 71 1+z(17) _1
4 \/i Y p_
1
Both residues are ———, so
resiau I 2\/§
2mi —=]§ g(Z)dZZ/ g(Z)dZ+/ g(Re™)-iRe®d), R>1.
V2 Cr -R 0
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If R > 2, then we have the following estimate on Cg,

1 : 1
1+_€—2'L1‘, 1
2 + = 5
|(Rpw>,1.‘R<1. 2 _ 1 1
gAe R2 1 = R? I SR I
Tl it R [— " 16
R4 R

It follows easily that the line integral along the circular arc tends to zero, when R — 400, so we
finally get by taking this limit,

+C>Ol 2
/ T dz = 7V/2.

1424

— 00
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

Example 4.15 Given the function

)= 5

and for every R > 1 the closed curve yg = I+ II 4+ III (see the figure), enclosing the domain

Ur = {z =ret

2
O<r<RaMO<t<§}.

Figure 8: The curve yg = [ + 11+ 111, enclosing Ug. Here, I = [0, R] is an interval on the z-axis, IT
is the circular arc, and I'I1 is the oblique line.

1) Find

[mfdz.

2) Prove that the line integral along the circular arc II tends towards 0, when R tends towards +oo.

3) Prove that

/*w 1 o
dr = .
0 I3+1 3\/3

1
1) The function f(z) = Y has the simple poles

1 ( ’ ﬂ‘) ( ’ 7T )

7] = — Z9 =e€ —i = z3 =e€ = .

1 ; 2 Xp 3 ) 3 Xp 3

If R > 1, then only z3 = exp (z g) lies inside g, so it follows by the residuum theorem that

1 211 z3
dz = 2mi- (23) =2Mi sy =
. f(z)dz i - res (f;z3) = 2mi 522 3
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2) We get along IT the estimate

/ dz
II 23+1

3) Along I11 we choose the parametric description

- 1
T R3-1

%”R—m for R — +oo.

(R—7) exp (ﬂg) . rel0R),

SO

27
P <,27r> /R dz
dr = —exp (i —
0

R
111 (2)dz = /0 14 (R —r)3exp(2mi)

Then by insertion and the limit R — +oo,

T , . 2 teo dg
g(\/g—z) = RETwﬁRf(z)dz0+{1—exp<z?>}/0 e
3 3 [ d 3 e g
——i\/—— / i :i(\/__l)/ v ,
2 2 o x3+1 2 o x3+1
so by a rearrangement,

/+°° dr  2m
o w34+l 3V3

Remark 4.4 The integral can in fact also be computed by more elementary methods. We get by a
decomposition,
I 1 _11 1 3—a®+a—1
B+l (z+1)(@2—2+1) 3x+1 3 (@2—x+1)(z+1)
1 3
r—-)_-2
11 1 z-2 1 1 1 2) 2
- 3z+1 3 a22—z+1 3 z+1 3 1\? 3’
(“5) "1
hence
T da 1 [T dx 1 [T 221 1 [t dx
0 2341 3Jo x+1 6J)y x2—-z+1 2 Jo 1 3
(“5) "1

1 22 4+20+1\17° 1 2
= - |In({———7— + - —=
6 > —x+1 /], 2 V3

ol () G o
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Example 4.16 Given the function

22

&)=y

1) Find all isolated singularities of f in C, and specify their types.

2) Prove by using the calculus of residues that the improper integral

o0 332
/ -5 o dr
0 zt a4 41

; t of the value —
1S convergent o e value —-—=.
I 23

One may use that f(x) is an even function.

1) First note that

(z2—1) (z4+z2—|—1):z6—1=0

for
z:exp(im), p € Z.
3
When we again remove the roots z = +1 of the auxiliary factor z2 — 1, we see that the simple
poles are
(.W) 1+.\/§ or 1+.\/§
e — == — e — ) =— —
P\'3) T T "3 2 Ty

( ‘7r) 1 V3 2T 1 V3
exp|—i=)==—1—, exp|—t— | =—=—i—.
3 2 2 3 2 2

2) Since we have a zero of second degree at oo, and since we do not have any pole on the z-axis, we
conclude that the improper integral is convergent. The integrand is even, so we get by an extended
residuum theorem that

+o00 22 1 +o00 72
————dx = = ———dx
o rt4a?+41 2 ) o 42241
2
= m’{res (f(z);exp (ig))—i—res <f(z);exp (z%))},

2
3

because exp (z g) and exp (z ) are the only singularities in the upper half plane.

Using the rearrangement

f(z):z4+22+1: 26—-1 7
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we get
res (F(): e (i5)) = [#] e % - explir) - {eXp (%”) - 1}
= —é{———f—i;—l} = %{3—2\/5},
and

hence by insertion,

+oo 2 ;
/ T ﬂ.(_mﬁ):%ﬁ:i,
0

A1 T 1
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Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

Remark 4.5 Since

z4+22+1:z4+222+1722:(22+1)27227(22+z+1) (z2fz+1),

it is of course also possible — though not quite easy — to use the method of decomposition. This variant
is left to the reader as an exercise. ¢

Example 4.17 Given the function

2

f(z) = Z4—_Ha

and for every R > 1 a positively oriented curve
I'r=Ir+1Igr+ IRy,

(cf. the figure), which surrounds the domain

UR:{z:re” ‘ O<T<R0g0<t<g}.

-5 0 05 i 15 2

-0.5

Figure 9: The curve I'g, starting with I = [0, R] on the z-axis and with the singularity exp (z %)
inside the curve.

1) Prove that

(2)dz = T

3 55 ()

2) Show that the line integral along the circular arc 11 tends towards 0 for R tending towards +oo,
and find the value of

400 2
x
—dx.
/0 A1

Download free books at BookBooN.com

66



Complex Funktions Examples c-7 Improper integral, where the integrand is a rational function

1)

The function f(z) has the four simple poles

zp:exp(i{g—i—pg})7 pe{0, 1,2 3}.

Of these only

zozexp(i%> :\/ii(lJri)

lies inside I'g, when R > 1. Then by Cauchy’s residuum theorem,

22 22 w1
FRf(z) z mires (Z4+1,zo) i yre M
2 (1 —14
T I S k) B S
2 1+i 2 2 2V2

, T
We use along the circular arc 1 the parametric description z(t) = Re, t € [O, 5}, so we get,
the estimate for R > 1,

22 3 R? T 1
—E _d|< | = Rat=". 0
/,,Rz4+1 - —/0 Ri 1 2 T

when R — +oo0.

Finally, we use along IIIr on the imaginary axis the parametric description z(t) = (R — )i,
t €0, R], giving

22 B (R —1)%2 _ (R g2
/,HRZ4+1dZ_/O (R—t)4i4+1'(_l)dt_l/o i

Then by (1) we get by insertion and taking the limit R — +oo,

2

—d
zd+1 s

™ ) N
m(1+z):(1+z)/0

hence

/-‘rDO .’L’2 T
dx = .
0 x4 +1 2\/5

ALTERNATIVELY, we get by a decomposition,

x? x? x? z?
w1 x4+2x2+1—2x2:(x2+1)2_(\/§x)2:(x2+\/§x+1)(x2—\/§x+1)
ar +b cx+d
- (x2+\/§x+1)+(x2—\/§x+l)’
thus
2 = (ax—i—b)(m2—\/§x+1)+(cx+d)(x2+\/§x+1)

= (a+0)z3+(b—V2a+d+V2¢)x? +(a—V2b+c+V2d)z+b+d.
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By identifying the coefficients we clearly obtain that
a+c=0 and b+d=0,
SO

V2(—a+c)=1, thus ¢ = —a =

Sl

and b = d = 0. Hence

x? - 1 T T
zi+1 Qﬁ{xQ—\/ix—leZ—F\/ix—l—l}

L we V2 % 1 V2 V2

N 4\/§{x2\/§x+1+x2\/§m+1_aﬂ2+\/§x+l x2+\/§x+1}

1 20 -V2 2042 L1 N
ANV2 | 22 —V2x4+1 22+V2x+1 4 1\? 1 1\? 1
+5 (et —5) +3

Clearly, the improper integral f0+oo dx is convergent, and

x
4 +1

+oo 2 “+oo 2
1
/ 4x_dz:_/ g
o T+l 2) o #*+1

1 1 /R 2r — /2 20 + /2
= — Ilim — dx
2R4od /2 J g |22 —V2z2+1 224+V2x+1

1 1 +o00
+§ "1 [\/ﬁArctan (\/5,7: — 1) + /2 Arctan (\/537 + 1)}_00
R
1 2?2 —V2z+1 1 ™ ™
= —— lim In| ——— 4+ —(r4+7) =0+ — = —.
82 R‘”FOO[ <12+\/§x+1> e W2 ( ) 2v2 V2
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Example 4.18 Given the rational function

224241

flz) =

A4 22417

1) Find all the isolated singularities of f in C, and specify their types.

2) Prove by calculus of residues that

/+°° [y | 27
P

e T2 1T

1) First variant. If z # £1, then

224241

-1 (P +z+1) 2-1 z+1 1

242241 (22-1) (24 + 224+ 1)

=(z+1)- =

and the simple poles are

1 =

DO | =

Si.
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Second variant. Obviously, z = 41 are not poles. Now,
(z2=1) (" +224+1)=2°-1=0
for

Z = exp (z%) , for p € {0, 1, 2, 3, 4, 5},

and since we shall remove p = 0 and p = 3, because they stem from the auxiliary factor 22 — 1,
the singularities are

1
zZ1 = exp(i—) :§+i
T

. 2
Zo = exp (z?)z—
s

1

22
. A\ 1 V3
= eXp(Z—)__i_ZT’
- . bm 1 V3
Zs = exp(z?)——z—.

Each one of these is at most a simple pole, and they could even be removable singularities.
Analogously,
(z=1) (P +241)=2°-1,

so since z = 1 is a “false” singularity coming from the auxiliary factor z — 1, the numerator
has the roots

1 3 1 3
22:—§+l§, and 54:—§+Z§,
which will cancel the same zeros in the denominator. Thus
1 3 1 t3
22:—§+i§, and 54:—§+¢8q; ,

are removable singularities, while

1
21:§+27, and 25:

are simple poles.

—1 ,

V3
2

DN | =

2) The integrand is defined on R, and since the integrand has a zero of order 2 at oo, the improper
integral is convergent, and we do not need the notation “p.v.” (= “principal value”). The improper
integral can be computed in a number of ways.

First method. By a simple integration (without using the calculus of residues) it follows from
the first solution above that

/+°° 2 +ar+1 /+°° dx /+°° dx
———dr = S - 5
oo T+ 2?41 oo X2 —x+1 . 1 9

(=-3) 3

& (D)
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Second method. We shall in the calculus of residues use that only z; =

+i§:exp<ig)

DN | =

lies in the upper half plane and that 23 = —1. Then

oo 2441 ) z4+1 Mz +1 21 22+
—d 2mives | 5——=; 21 | = 2w = — 3
22+ 1

i
oo T2+ 1 322 3 23
2mi 27 V3 27
= s a4z y=_20" 9. ;X2 ) = 2L
3 (B=+al=—7 ( Z2> V3
Third method. Calculus of residues without a reformulation gives the following difficult compu-
tations,
T2 p 41 ) 224241
——————dr = 2mires| ———; 21
oo TEH X241 2442241

o Zta+l o {tAatl
o 42:‘?’ + 22 N 4z3 + 22,

= 2m \/_
1 3
4-1)+2 = 4i X2
(-1) + (2—1—2 2>
_ g LEWVE 2w 144V3
—4+14+4V/3 V3 -3+
_ 2 i-V3 _ 2n
V3 —VB+i V3B

Turning a challenge into a learning curve.
Just another day at the office for a high performer.

Accenture Boot Camp - your toughest test yet

Choose Accenture for a career where the variety of opportunities and challenges allows you to make a
difference every day. A place where you can develop your potential and grow professionally, working
alongside talented colleagues. The only place where you can learn from our unrivalled experience, while
helping our global clients achieve high performance. If this is your idea of a typical working day, then
Accenture is the place to be.

It all starts at Boot Camp. It's 48 hours packed with intellectual challenges and intense learning experience.
that will stimulate your mind and and activities designed to let you It could be your toughest test yet,
enhance your career prospects. You'll discover what it really means to be a which is exactly what will make it
spend time with other students, top high performer in business. We can't your biggest opportunity.
Accenture Consultants and special tell you everything about Boot Camp,

guests. An inspirational two days but expect a fast-paced, exhilarating Find out more and apply online.

>
Visit accenture.com/bootcamp accenture

« Consulting « Technology « Outsourcing High performance. Delivered.

Download free books at BookBooN.com

71


http://bookboon.com/count/pdf/364500/71
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5 Improper integrals, where the integrand is a rational func-
tion times a trigonometric function

Example 5.1 The transfer function of a RC-filter is given by

1

e =1 orire s

Find the corresponding answer.

The corresponding answer is given by the improper integral

e 2mixt 1 e 1 2Tt
h(t)=/ f(x)e dt:mRC/_oo e d,

o _
2nRC
Here, z; = s the only pole of the corresponding analytic function
2nRC
1 1
i) = 2miRC i
2nRC
1
and it is obvious that there exist constants k, and r > 3RO such that we have the estimate
s
k
lf(2)] < [ for |z| > r.

Since f(z) does not have any singularity in the lower half plane, we conclude from the corresponding
residuum formula, which here is empty that

h(t)—/mf( )e2mist dp — /+Oo ! Pt dy =0 fort <0
= . xr)e x_Qﬂ'ZRC . B i € X = or .
271RC

If instead t > 0, then, since we have already checked the assumptions of the validity of the residuum
formula,

+o00 ) o ei?ﬂ'zt i 1 t
_ 2mixt . —_ . .
) _/ J@) ™™ = o oRe T __ i ‘2RC| T RC eXp( RC)'
2nRC
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Example 5.2 Compute the improper integrals
T reosx T rsinz
———— dx 0g —— do.
oo TAH1 oo T2

Here we must consider the analytic function

iz

ze
22 +1

, for z # 41,

Z COoSz z sinz

and . Clearly, the rational function ———
22 +1 22 4+1 v 22
no pole on the X-axis, so the assumptions of the residuum formula are fulfilled. Since m =1 > 0, the
pole z =i in the upper half plane is the only relevant singularity. Hence by the residuum formula,

T petw ) ze® Cdett
Q—d:z::27rz'res -t =27 - — = —.
N | z2+1 i+ e

Then by separating into the real and the imaginary parts,

+oo +o00 .
/ x;osxdx:() og / xsmxdx: :
Lo 2241 22 +1 e

instead of

has a zero of first order at oo and

— 00

Example 5.3 Compute

TOO g sinx T cosTa
—d b —dx.
@ [CSRgaes w [ ST

x
(a) Here P is a rational function of real coefficients and with a zero of first order at co. The
x

denominator does not have real zeros and

z

m‘gm for |Z|247

so we conclude that the improper integral is convergent. Using that
sinz = Im (e“‘w) ,

where 1 > 0, it follows by the residuum formula that

oo . 1z 12 e
x sinx . <¢e : i =¢ sic
/m ol Im{m'reb (Zz—+9 32)} —QWRQ{JL%H&} _2”R6{3i+3i}

-3
= 27‘('36 :1.
6 e3
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1
(b) Here e has a zero of fourth order at co and no poles on the z-axis. Hence, the integral is
z

coS T
convergent. Since 4—:4 is an even function, it follows by the symmetry and a residuum formula
x
that
+o00 400 +o0 T
COSTTT 1 cos x 1 e
/ 4—7r dv = = — T —(Re) / dx
0o zt+4 2 x +4 T2 o x4

ei‘n’z ]
17rz |:e7i7rz:| ) |:Z€i7rz:| N |:Zei7rz:|
=T
z 14i 428 L P Azt | 1y,

) . ; 1
= {<1+z> TR (LT = et = e

Example 5.4 Compute

T cosa oo cos T
@ | Gt 0 | amam

(a) We see that has a zero or order 6 at co and no real pole. Hence the improper integral

3
(1+22)
exists. The integrand is an even function, so by the symmetry, followed by an application of a
residuum formula,

+oo ix iz
/ ﬂdmz (R)/ e—dx:m'-res 673;2‘
o (1+ x2) oo (14 22)? (1+22)

1

2
R B ili d ie’* - 3e?
-7 2' z—i d22 Z—|—Z T2 i dZ (Z+Z)3 (Z+Z)4

i I 61 e'* N 12 € i et Gie ! 1 e !
= im - =< — — .
2 o (Z + Z) (z+9*  (z+19)° 2 L (20 (291 (24)°
2 7
_ { (20)” = 6i- (20) + 12} = o {4+12+12}_%.
e

(b) We get by a decomposition that

1 11 11
(1+22)(4+22) 3 2241 3 2244’

so it follows immediately that the integral is convergent. Then by the residuum formula,
Heo cosw 1 [T cosz 1 [T cosz
de = = ——dx — = ——dx
oo (T4 22) (44 22) 3 ) o 241 3 ) o 22+4
1z 1 iz
Re {27rz' - res <22€+ 1 ; Z)} —3 Re {271'@' - res (Z:ﬂ ; 2@)}

e~ ! 1 e? 1 -~ 1 1 T
Red2mi-C \ — “Red2mi- = b=2.0 2. =" (2e—1).
{m 22‘} 36{7” 4¢} 3¢ 3 2 gz

1
3
1
3
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Example 5.5 Prove that
+o00 +oo
/ cosaﬁde:/ cosw de:ﬁ.
oo Ltz oo (14 22?) e
Clearly, both integrals are convergent, and we can apply the residuum formula. Thus

+oo +o0 i iz —1
COST e . e . . € m
[ mdﬁﬂRe{/m —x2+1d$’}Re{2ﬂ'Z'res <—Z2+1,Z)}2’/TRG{Z_22 }g’

and

+o0 +o0 T iz
Y e Re — % dr s =Re{2mi-res| —— ;i
2 2 2
oo (1422) oo (2241) (22+1)

1 d etz iet? 2%
orRedi-— lim — (S )\ =27 Redq -
T e{’ T ((z+i)2>} T e{z[(z+i)2 (z+z‘)3L_l}
ie”! 2¢~1 e ! 2¢ 1 2 1 1 T
orRedi o —2C JloogrRed S 28 L2 (2 )T
g e{’(w (21-)3)} T { I s } ¢ (4*4) e

o
Qacha?
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Complex Funktions Examples c-7 Improper integrals, where the integrand is a rational function times ...

Example 5.6 Compute
ToO xocosz Too rsing
—_d b —_——dx.
(a) /_Oo pepus T LAY /_OO 22— 2z 410"
It follows from

/+°° T e%% d /+°° T COoST d +,/+°° T sinx d
—  dr = —  _dx+i —dx
e T2 =21 410 oo T2 =22 +410 2 =2z +10

— 00

that it suffices to prove that

+o0 T eiw
/ S o0
oo TE—22 410
exists and to find the value of this integral.

We see that has a first order zero at oo and simple poles at z = 1 4+ 3i ¢ R, hence the

z
22 —22+10
improper integral exists. Since m =1 > 0, we can compute the integral by a residuum formula,

+oo T iz iz
ze ze ze
7 dr = 2mi-res| —"—" 143 ) =27 S
/,oo 2225 +10 m reb(z2—22—|—10’ * Z) sy 143
1435 i(1431) .
% = g (1+ 3i)e*{cos1+i sin1}.
i
Then by a separation into the real and the imaginary part,

(a)

= 2mi-

“+o0
T COST 7T .
/Oo mdl’z @(COSl—Sslnl),

(b)

+oo 3
T Smx ™ .
/ de:@(3COSI+SIH1).

— 00

Example 5.7 Compute

T rsing oo dx
— d b .
(a) /,oo 214z +20°" () / 1+ 22

—00

(a) The function has a zero of first order at co. The poles are

z
22 + 42420
—2+4i ¢ R,

so by a residuum formula,

/+°° T sinx p I /+°° x e d
—  der=Im ——dx
oo T2+ 4z +20 oo T2+ 4420

— Im { 2ri N L G T -
= 1lm T - TeS Z2+4Z+207 g =em-dmat z;»lgl+4’bz+2+42

—92 4i i(—2+441)
=27m-Im {z . (=2+ 26
7

} = ;?(2 cos 2 + sin 2).
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(b) We have of course,

+oo d
- [Arctan |T%° = 7.
oo 1+ a2?

ALTERNATIVELY, it follows by a residuum formula that

T dr , . L1 2mi
=2mi-res | ——; i | = 27 lim - = — =7
oo 1422 1+ 22 z—iz+d 2

Example 5.8 Prove that

T cosx T
dr = =
s coshz

1h_.
cosh 3

HINT: Integrate the function B
¢

o along a rectangle with the corners —R, R, R+ wi and —R + i,
osh z
and let R — +o00.

Figure 10: The curve C, with the singularity zy = i g inside C;.

We shall use the hint, so we call the curve Cg. It follows from

coshz =0 forz:ig—i—ipﬂ, pEL,

that z =1 g is the only singularity (a simple pole) lying inside C'r for every R > 0. Hence by Cauchy’s
integral formula

cos (i — cosh —
j{ i dz:27ri-res(cosz ;z'z>:2m'- 277 = 2mi - = = 27 cosh —.
op coshz coshz ™ 2 sinh (5) zsm§
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Complex Funktions Examples c-7 Improper integrals, where the integrand is a rational function times ...

On the other hand,

j{ cosz o _ /R cosw dx—/R cos(z + im) i
cp cosh z _pcoshz _p cosh(z +im)
+i/ cos(R + zy) dy — z/ cos(—R + zy) d
o cosh(R+ 1y) o cosh(—R +iy)

We first note that

/R cos(x + im) d /R cosa:-coshﬂ'—isinx-sinhﬂd
_ bdid WLILUYS = - x
g cosh(z + im)

pcoshax - cosm+ 4 sinhx-sinm

B cosx o R sing
= coshm dr — i sinh dx
_p coshx R coshz

R
= cosh7r~/ oS dr + 0,
r coshz

because the latter integral has an odd integrand. Summing up we get for the first two terms,

R R , R
/ o8t dm—/ cos(z +im) dr = (l—i-coshﬂ)/ BL .

_pcoshz _p cosh(z +im) R coshz

Clearly, this integral is convergent for R — 400, because the numerator of the integrand is bounded,
and its denominator tends exponentially towards 0 by the limits z — 4+o0o. We only have to show
that the contributions from the vertical axes tend to zero for R — +oo. It follows from

cos(R+iy)  cosR-coshy —isin R-sinhy
cosh(R +iy) cosh R-cosy +i sinh R-siny’

when 0 < y < 7 that

cos(R + iy) 2 cos? R - cosh? yy + sin® R - sinh? y B cos? R + sinh? y
my cosh? R - cos?y +sinh? R -sin’y  sinh? R + cos?y
1+ sinh? 7 _ cosh?
sinh? R~ sinh’R’

The length of the path of integration is 7, so we conclude that

/ cos(R—l—zy) aol < . C'OShﬂ' -~
o cosh(R + iy) sinh R

0 for R — +o0.

Since also

cos(—R +iy) - cosh

cosh(—R +iy)| ~ sinh R’

it follows in the same way that the latter integral tends to 0 for R — 4o00. Summing up we get by
this limit,

T cosx

dx = 27 cosh g,

(1 + coshm) /

o Coshz
and since

1+ coshm =1+ {2<:osh2 g - 1} = 2cosh? g,
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we finally get that

T
/+oo COS T 27 cosh 5 -
T = = )
T T
—oo COshz 2 cosh? 5 cosh —

2

Example 5.9 Compute

+oo +o00 :
cosT sin 2z
—_— b ——dux.
(@) /,Oo 22+ 4’ (®) /,oc 2rzr1

The denominator is in both cases a polynomial of degree grad 2 without zeros on the z-axis. The
numerators are purely trigonometric, so we get by a residuum formula,

(a)

e oo i iz 321
cos x e . . . . o
/;oo I2+4d$:(Re)/—oo x2—+4dl’=2ﬂl~res(m;21):T-Qﬂ'l:@.

o
B By 2020, wind could provide one-tenth of our planet’s
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jeation. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!

T’% Power of Knowledge Engineering

.
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Complex Funktions Examples c-7 Improper integrals, where the integrand is a rational function times ...

(b)

+oo ;

2

/ _sin2z . o
oo T2+ +1

+oo
)
/Oo a:2+:c+1
2iz 1
= Im< 27 - res € —+i§
2+z+1 2 2

2z ei(—1+4iV/3)
= Re<{ 27 =Re2r ——
z—>—l+z‘f2z+1 —1+iv3+1

271'

. 27 RV
— (= A sin 1.
} R

w

Example 5.10 Compute

+oo .3 +oo .2 .
(a) /0 T smxdx, ) /0 T 0053372 d

zt+1 (22 +1)
The integrands are in both cases even functions, so they may be extended by symmetry to all of R.
Furthermore, the difference of degrees of the numerator and the denominator of the rational function

of the integrands is at least 1, where the denominators are dominating, so the integrals are convergent,
and we can find their values by a residuum formula.

(a) The zeros of the denominator are determined by 2% + 1 = 0, so
1 1
4+t
V2 V2
and we get
400 3 .. +00 .3 .1 +oo .3 ix
z” sinx 1 z’sinw 1 z’e
——dr == ——dr =<1 —d
/0 A1 Y 2/00 A1 T3 m{/_oo A1 "T}
= —1Im< 27 |res res | ——; ——+ — .
2 RN \f 41 2 V2

Let zo be any pole. Then 2§ = —1, and
o 23et? zSeizO 1 izo
T —_— = = -
Ay 23 1
hence by insertion,
/+°°xsma:d . {,1 (,(1+¢>>+,1 (< 1+¢>>}
——dr=nlm<{i-—exp|i|—=+ — i-—expli|—+—
o x4l 4 &P 2 V2 4 &P V2 V2
sfeen () 3 {me () e ()1 =3 o0 (55) = ()
= = xp|——= ] = -<qexp|—= |exp | ——= =—exp|———= — .
5 P{-5) 3 Pl )P -5 5 OXP 5 7
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(b) Here z =i is a double pole. It lies in the upper half plane, so we start by computing its residuum:

ZSESiz ) 1 i d 2263iz i 22637;7; 3i2263iz 22263iz
res| —— ;i — lim — ¢ —— % = lim —
EFE DG \Gri?) S\ Gr? T Gr? G
_ 2@'(3._3 3@(—})e—3 B 2(—1‘)6_3 _ e? i+ 6i— 2(—‘1) _ 1
(2i)2 (2i)2 (2i)3 8 —i 2¢3
Then by the symmetry and the residuum formula,
/+°° x? cos 3z 1 /+°° z2 cos 333 /J”’O x2ed3®
-3 x — — d:C
o (22+1) 2 ) (224 1) s (224 1)
1 2 322
= —Re< 27mi-res —Re 2mi 4 — S
2 z2 4 1 2 2e3
Example 5.11 Compute
+o0 : +o0 :
x sinz sinx
S — ) b o
(a) /0 (224 1) (22 + 4) x (0) /_Oo 22+ 4z 1 5°F
In both cases the integrand satisfies the assumptions for the application of the residuum formula.
(a) First we get by a decomposition,
1 11 1 1
(22 +1) (22 4+4) 3 22+1 32244
The integrand is even, so by the symmetry, followed by an application of the residuum formula,
/+°° x sinw 1 /+°° T sinz
€r = — — — dx
o (?+1)(z*+4) 2 oo (@®41) (2 +4)
B 1/+°°:Esinx 1/+°Oxsin:17
T 6/ 21 6) . 214
1 iz 1z
= 6Im{27ri-res (%ikl’l)} — 61m{2m’.res (;LH; 22)}

T ze® z e'* .
= gRG{I‘GS(ZQ—_H;Z>— es<m,2z)}
T iet? 2i b2 T el 72
= _R —q- —TRed &
3 e{i+i ! 2i+2i} 3 e{ 2 2 }
T

(b) The poles are z = —2 4 4, of which only zp = —2 + 4 lies in the upper half plane. Then by the

residuum formula,

“+o00
[m

sin x

22 +4245 v

eiz

Im{%”es ((z+2+i)(z+2—i) ; _2“)}

i(—2+1)
. e —2i—1y _ T .
Im{?mm}(lm{ﬂe }——g sin 2.

Download free books at BookBooN.com

81



Complex Funktions Examples c-7 Improper integrals, where the integrand is a rational function times ...

Example 5.12 Prove that

+o0 eiaa:
/ ———dv=me "  fora>0.
oo T2

The claim is trivial for a = 0, because

+oo 1
/_Oo o dx = [Arctan z]T° = 7.

If @ > 0, then the assumptions of using the residuum formula are satisfied, so

+oo etax etaz etai
/ ———dr =2mi-res | 5——;i| =2mi- —— =me "
o T4+1 z4+1 i+

Remark 5.1 If instead a < 0, then we get by a complex conjugation and an application of the first
result that

+o00 etax “+o0 e—iaz
——dr = Q—dxzﬂe—(—a)zﬂ'ea:ﬂ'e_la‘,
feo T* 41 oo X2 F1

so we have in general that

/+oo eiam lal
dr =me 1® a € R. O
oo X2 H1 ’

Example 5.13 Prove that

+oo —a
Ccos T Te
/ 5 5 dz = fora>0.
T +a a

— 00

The conditions of convergence of the improper integrals and the legality of the application of the
residuum formula are fulfilled. Then by the symmetry,

T ging
T =0,
oo TTHa

T cosw o el , et ) ettt gea
——— dv = (Re) ——— dr =2mi-res | 57— ;ia) =27 — = .
feo TFHa o T2+ a z¢+a 2ia a

SO
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Example 5.14 Compute for a, b € Ry,

+o0 :
(a) / T sinax d,

o T2+ b2

oo cosax

In both cases the conditions of convergence of the improper integrals and the application of a residuum

formula are fulfilled. Hence, because a, b > 0,

(a)

oo 4 sinaz
—5 o 2d3: =
o TZHD

}:Im{Qﬂ'i lim =¢ - }
z—ib 2 + 1b

I
—

B
—N
]

3
-~

~.
(=
9
|
=)
>
——
I
3
)
|
2
>

(b)
+oo +oo iax
/ cos ax do — (Re)/ e

oo X242 o X242

e m
dr = 2mi i =t — = —
v m z—»ln;'lbz—i—ib T 90 b ©

iaz —ab
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Example 5.15 Prove that the integral

T rsing
TR G
1o 1+w

is convergent, and find its value.

We have an improper integral, where the integrand is a product of sinz and a real rational function
without poles on the z-axis and with a zero of third order at co. From this we conclude that the

integral is convergent, and its value is given by the residues at the poles in the upper half plane of the
z 622

function ——. We have more precisely,
1424

T 4 gina . ze® 141 z el —1—|—z
———dr=Im<{2mi |[res | ——; — | +res
oo 142t 22417 V2 A1
ze” 1414 z et —1+z z €'
= 27R ;— _— —2 R —
" e{[ (z4+1’ \/§)+res(z4+1’ \/5 ! e{ {423}1“}
V53

2 . 2 .
= 27TRe{ Zz ezz] » + |:ZZ zz:| Hi} = nge {Z exp <Z (
V2

Example 5.16 Prove that
/+°° cosz 1 A n 1
——dr=7mexp|———=|sin| -+ —].
oo Lzt P V2 4 2

We first note that the integrand f(x) = cosx - does not have poles on the z-axis and that the

) 1+ 24
factor ———— has a zero of order 4 at co. Since
1+ 24

T isa real rational function, we can obtain the
x

value of the integral by a residuum formula.
Now 1+ z* =0 for

z=e (i{z—i— Z}) € Z
= exp 1 p2 ) p )

so we get by the residuum formula,

+oo +o0 ix
cosx e
——dr =R d

/_oo Lot ™ e{/_oo Lot x}

Re (9 ei? (77) N e'? 37

= Re iqres | ——; € i— res| —— ;e T — .

i 1420 Py 1+20 P\
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All poles zy with 25 = —1 are simple, so by RULE 11,
eiz 62’20 Zoeizo 1 izo
res| ——520 )| = — = = ——zpe”.
1+247 7 423 424 47"
Finally,

s 1
expli—)=—4(1+1 0 exp|i— | = —=(—141),
p(i5) =5t o ew(if) = 14

hence by insertion,

[ e ) (i) (o))
_— — T N - J— 2 2 [ J— 2 2
oo LAt 4 V2 V2 V2 V2

1
1
] ' 1 il N —i L
= Re|-Z.¢ f\/i-—{(l—l—i)e \}5—1—(—1—&—2)6 \lﬁ}

¥

S

= Re m 67% {(67% — 67\%> +1 (eﬁ +e\/i§)}]

2v/2
[ m _ 1 1 1 1 1 1 1
= Re|———=-¢ v2-<¢2i-sin— +17-2cos— =Re|me v2-{ —sin—+ — -cos—

1 ™

_ 1 ™ 1 _ L
= mWe V2 ¢sin——-cos— +cos—-sin—=me V2 sin|—+—].
{ V2 4 V2 o4 } <4 V2 )
ALTERNATIVELY and slightly shorter,

+oo . an .
/ —lcosx4 dx = Re |:27Ti (—i) {ei% ViV + el T 6_1\}5_\}5}]
+x

—00

s _ 1 Cr oL Y N _a 1 i(m L (T
= Re[—.-e ﬁ{e’zezﬁ—e_’ze Z\/EH:Re{ﬂ'e ﬂ-f{el(4+ﬁ>—e i(3+% H

1 1
= me V2 gin + — .
( \/§>

N
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Example 5.17 Prove that the improper integral
+ i ( + 77)
oo sin (x4 —
/ 4
—oo (@7 +1) (2 1+ 4)

is convergent. Then find the value of the integral.

Since
o (e45) = Jy e s
sin{x+ —) = —= (sinz + cosx),
4 V2

1
and since — is a real and even rational function with a zero of order 4 at co and with
(x241) (224 4)
no pole on the z-axis, the improper integral is convergent, and we can find its value by a residuum
formula, where we use that the integral of an odd function over a symmetric interval is 0,

T
+oo  Sin (w + —) 1 +oo . +oo
/ ; 24 do — {/ i 31113:2 i +/ i cos a:2 dx}
e @ +1><x TR @@ T L, @D
+oo 1 oo (11 11
_ / ST (Re) / P da
\/_ (x241) (22 +4) \/5 oo 3 2241 3 22+4
27i { ( e’ ) ( e’ ) } 27i {6_1 e ? } (2¢ — 1)m
= —=qres| ———;i) —res| 5———; 2 = - =
32 2241 2244 32 2 44 612 - €2
ALTERNATIVELY we may carry through the following computations,

+oo  sin ( +oo exp m + ))
/ dx = Im/ 477 g
:L‘2 + 4)

e (1) (22 +4) (22 +1) (22 4+ 4)

g ) z(z+ ei(er%) o
= Im < 27 |res —(z 1) (22+4) + res —(22+1) (22+4), 7 .

It follows from

ci(z+%) ez‘(z+g) i+E) -1
res| —5——5—<;i| =lim = =—_.¢'%

(22+1) (2244)

and

(z+ ) o y (Z+ ) (21_‘— ) —e 2 i
B —— = = = . 4
eI (210 ) T () (2 +2i) | —3-4i 120 C
that
, 77
+oo s |x + — -1 -2 ;
/ de N e L N
oo (2 1) (224 4) 6i 12i V2
I {ﬂ'~(261) 1+i} (2e — )7
m . = .
Ge? V2 6v/2 - 2
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Example 5.18 Given the function

2’2

1@ = a7

1) Find the singular points and their types in C U {oo} for f(z).

2) Find the value of the following two complex line integrals,

CN SR CLINON S OIS

3) Prove for every w > 0 that

oo g2 T
/ 1 e“tdt = — e ¥ (cosw — sinw).
Lo P44 2

1) Clearly, z = oo is a removable singularity (a zero of second order).
The denominator z* + 4 has the zeros

144, —1+i,  —1—i, 1—i.
These are all simple pole of f(z).

2) a) Since there is no pole of f(z) inside the circle |z—4| = 2 (cf. the figure), it follows from Cauchy’s
integral theorem that

7{—4|=2 f(z)dz=0.

b) All singularities of f(z) lie inside the circle |z] = 2, and z = oo is a zero of second order. Hence,
by reversing the direction of the curve,

}{z|2 fz)dz = _?{ f(z)dz = —2mi - res(f;00) = 0.

z|=2
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ALTERNATIVELY, the residuum in a general pole zg, for which 23 = —4, is given by

S T A
A+a’ ) T a8 T 4z

SO

. 2 1 1 1 1
dz = 2mi T %n ) =2mi . . . :
7{|=2f(z) z m;res<z4+4,z) m{l—l—z—i_—l—kz—i_—l—z—’_l—z}

1 1 1 1
m{1+i 1—i 1+i+1—i}

3) Since the integrand has a zero of order 2 at oo, and since there are no real singularities, the
improper integral exists, and when w > 0 its value can be found by the residues in the upper half
plane,

+oo 42 2 2
[roo t4+4ezwtdt= 271 {I‘GS (m 6zwz; 1+Z> + res <2’4——i-4 ezwz; —1+Z)}

S2etwz S2piwz 2 eiw(1+i) eiw(—1+i)
= 27Ti{ lim + lim —}:—{ + }

z—1+i 423 z——1+i 423 4 1+ 1+
1—1 . 1414 . ] 1. . . ) )
— %{ 2Z'e—wezw_ ;_Z.e—we—zw}:%e—w‘§{ezw_iezw_e—zw_ie—zw}
W ,—tw w —tw
= ge_“’-i{e 22,6 - S +2€ }:ge_“’-(cosw—sinw).
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Example 5.19 (a) Given m > 0. Prove that the improper integral

+oo 2 _imx
xr-e
(3) /

"
L T 622125

is convergent, and find its value.

(b) What is the value of the improper integral (3), when m < 0 instead?

2
T
a) Clearly, ——————
(2) V2 + 622 + 25
Hence, the improper integral is convergent, even for every m € R, and when m > 0 we can find
the value by a residuum formula. When the denominator is put equal to zero,

has a zero of order 2 at co, and the denominator is > 25 for every = € R.

4622425 = (224+5)° = (22)2 =0
we get

22 =-34+V9—-25=-3+4i=(+1+2i)?
so we have four simple poles,

1+ 24, —1 4+ 24, 1 — 24, —1— 24,

of which only the former two lie in the upper half plane. Hence, for m > 0,

+oo 2 jimx 2 imz 2 imz
xr-e z-e z e
———————dx = 2mi ——, 1+ 2 ——, -1+
/_Oo 62125 m{res<z4+6z2+25’ - Z)+1"es’<,7««4+6z2+25’ " Z>}

2 . 1 22€imz " 1 ZQGimZ 271_7/ z mz N 1 ZGimZ
= 2mi im — im _ ant im im

21420 423 + 122 2—-1+2i 423 + 122 4 142 22 + 3 2142 2213 T3
i { (1 + Qi)eim(1+2i) (,1 + Qi)eim(71+2i) }

2 | 1—-4+4i+3 1—4—4i+3

_ % {(1 + Qi)eim . e—2m _ (_1 4 27;)e—im . e—2m} _ %6—2711 {(eim + e—z’m) 42 (eim _ e—im)}
g e 2™ {2 cosm + 2i - 2i sinm} = % e 2™ {cosm — 2 sinm},

which is also true for m = 0, where

/+°° 22 ™
L A .
oo T+ 622+ 25 4

(b) If m < 0, then we get by complex conjugation,

+oo 2 imx +oo 2 ilm|z
xr-e xrx-e m
—  dx = " dr= . 2ml s — 94 ,
/oo 2t 622+ 25 /oo g e teosml =2 sinfml}

where we have used the result from (a) with |m/| instead of m.

Summing up we have for every m € R,

“+oo 2 _imx
x’e s
T dr=L.¢2m {cos |m| — 2 sin |m|}.
/Oo x* + 622 + 25 4
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Example 5.20 Find the Fourier transform of the function

Tz +1

f@) = 5ot

i.e. compute
+oo
s z+1
= i — |
o= [ e

first for € <0, and then for £ > 0.

We see that

_ P(2) z+1 ozt
f(z)_Q(z) 224142242 (241)241

is a rational function, where

1) the polynomial Q(z) = (z + 1)2 4+ 1 of the denominator has the simple zeros z = —1 4 i, where
none of these is lying on the real axis;

2) the polynomial of the denominator is of 1 degree bigger than the polynomial of the numerator;
3) if £ <0, then m = —£ > 0.

Hence, the conditions of convergence of the improper integral are satisfied for £ < 0, and since —1 +4
is the only (simple) pole in the upper half plane, the value of the improper integral is given by a
residuum formula,

+o0
A r+1 ) z+1 )
— e I ) v L e#E. {4y
1) /,co 2o +2° LT AT <(z +1)2+1 ¢ ' Z)

1 ) ) . .
—omi lim e g e ) g 0D e )
z——1+i 2(z + 1)

where we have applied RULE II.

Now P(z) and Q(z) have real coeflicients, so if £ > 0, then we get by complex conjugation,

+oo +oo
: z+1 4 c+1 — ,
— —i§ — i€x — S o— z__'.g(_l'f‘)
f(g)_/ 2w t2” wdx_/ oy dr = mi e = i ST

— 00 — 00

Summing up,

i - e84 = 1j . = 1€1(149) for £ <0,

f&) =

—qi - e8I — . e l€1(1—i) for € > 0.

When ¢ = 0, the integral does not converge.
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Remark 5.2 For £ < 0 we have

f(&) = mie 810+ — 7 e7IEl . {cos |¢] — i sin €]} = we € {sin €] + i cos [¢]},
so by a complex conjugation when £ > 0 we get all things considered,

me I {sin |¢] + i cos €|}, for £ <0,

f(&) = 0
me 1€ {sin [¢] — i cos €|}, for £ > 0.

In a VARIANT we may use the change of variable ¢t = 4+ 1. Then we have the following calculation
for £ < 0:

“+o00 “+o0 “+o00
= LT ey = —i€(t=1) gy — i€ —igt g
1 /_Oo 22 +2° ‘ /_Oo 2+1° ¢ e 2+1°

L z
= 2moelg~res<
z

511 e z) =2mi- e [2_ : e*@] =i e e =i 08,
2=

z i

i S
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e
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ALTERNATIVELY we may use for £ > 0 another residuum formula, because the conditions of its use
are still valid. We get

R +oo 1 ) 1 '
f&) = / vl e T dr = —2mi - res (L e —1— z)

oo X222 +1 22+22+42
z+1 ; 1 .
— . : i€z \ _ . : - i€z
2mi z—1>1—Hll—i { 2z +2 c } 2mi z—1>15111—i { 2 c }
= —mie ¥ = _pjef(=140),

Example 5.21 Given the function [ by

=z eiz

f(Z):m~

1) Find the singularities and their type of f in C U {oo}.

2) Compute the complex line integral

f(2)dz,

Cr

where Cr denotes the simple closed curve, which consists of
the half circle z= Re”®, 0<60<m, R>1,
and

the interval [—R, R] on the real axis.

3) Prove that the improper integral

T g osing
[,
o (z241)

s convergent, and compute its value.

1) Clearly, z = +i are double poles. Furthermore, oo is an essential singularity. In fact, we have
f(=iy) — 400 fory — +oo,
and also
fx)—0 for x — +o0,

so we can obtain at least two different limit values for z — oo.
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2) We have only the singularity z = ¢ lying inside C'g, so we get by a residuum formula,

. zet* ) . d z et
f(z)dz = 27rz.res(m;z):2m£1_%£{m}

9 Tim et n ize* - 2z e
=i | (z+19)?%  (2+41)2 (2+14)3

o et _ et _2i6_1 _7r_i
(20)2  (20)2 (203 f 2’

Cr

3) Since we have a zero of order 3 at infinity, we get by taking the limit R — +o0o that

+oo ;
Jr Im{ im ¢ £) dz} -
oo (:Ez + ]_) 2e

Since the integrand is even, we finally get

T g osing T
LAY =L
o (z2+1) de
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Example 5.22 Given the function

z elZ

f(z) = _(22 n 1)2'

1) Find the singular points and their types of f in C.

2) Let x1, x2, Y1 denote any positive real numbers where y1 > 1, and let v = 7y, 2,4, denote the
closed curve (run through in the positive sense), which surrounds the domain

A ooy ={2€C| —21 < Re(z) < 2 and 0 < Im(z) < y1}.

Prove that

3) Prove that the improper integral

+oo ;
/ T 81113:2 e
o (z241)

is convergent and find its value.

1) The denominator has the two double zeros 7i, and since the numerator is # 0 in these points, we
conclude that +i are double poles.

2) We see that +i is the only singularity inside 7, hence it follows by the residuum theorem that

) ze'? . .o d z e’
ﬁf(z)dz = 2mires (m;z> :QWZLLnli% (m)

9 i e n iz et 2z t#
74 lim —
v [ N PR (I PR PR

12 2%\ 2 1 .«
T e 4 2¢’

= Tie ! - =
=2 {m)z*(%)? 20

3) It follows from

T

m ~ W for |.CL'| large,

that the improper integral is convergent.

When we apply the parametric description z(t) = —x1 +it, 0 < t < y1, for one part of v we here
get the estimate of the integrand,

z ‘ e’ 1] —t

2 2 = 2
P ()

z BZZ

6= |2

)
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and the line integral along this part of + fulfils the estimate

Y1
f =z +it) idt‘ < 1] 5 — 0 for 1 — +oo.
° ja1* = 1)
Analogously we get
v1 N |2
flra+iat) idt| < -0 for 29 — +00.
0

(1)

Finally, we get for the curvilinear part by choosing the parametric description z(t) = t + iy,
t € [—x1,x2] | that

(0|
GOz+17] "

f () =

so the corresponding line integral is estimated by

< constant - e” Y — 0 for y; — +o0.

‘ b f(z)dz

z1

Then by taking the limits 1 — +o00 and x5 — +00 and y; — +00,

“+o0 xeiz T
/ — dr =1i—.
oo (22 +1) 2e

We conclude from

/+°° x et de/+°° xcosx2 dz+i/+oo acsinx2 dr = 2 /+°° :Usinx2 dr.
—oo (2241) —o (22 41) —oo (22 41) 0 (2 +1)

that

/+°° T sinx T
IR =
o (z2+1) de

Download free books at BookBooN.com

95



Complex Funktions Examples c-7 Improper integrals, where the integrand is a rational function times ...

Example 5.23 Given the function
2 eiz
flz) = ———.
(2) (22 4 4)
Denote by I'y = 7, + C’;r the simple closed curve run through in the positive direction, consisting of
Yo, the line segment [—p, +p| on the real axis and the half circle C; in the upper half plane of centrum
0 and radius o.

1) Find the isolated singularities and their types of f in C.
2) Prove for o > 2 that

.
f}gf(z)dz:z@.
3) Prove that

(2)dz — 0 as o — +oo.
cs

4) Compute the improper integrals

oo peiw T xsina
p.. —dx 0g — dx.
—oo (22 44) o (22+4)

-2

Figure 11: The closed path of integration C, and the two singularities +2.

1) The function f(z) has the two double poles +2i.
2) When p > 2, only the double pole 2 lies inside I',. Hence by Cauchy’s residuum theorem,

: ze”? , 1 d o ze”
s f(z)dz = 2mires (m, 22) = 2mi - T zlgrzlzﬂ {m}
et® n izet? 2z et
(z+2i)2 (24202  (2+2i)3

_ o e_2+i~2i~e_2 4i - e=2 _2mi 1+1+1 .
T\ @2 T T @) @3 [~ e \ 16 8 16 "4

= 2m lim {

z—21
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3) A parametric description of C:{ may be chosen as z(t)oe’

estimate when o > 2,

, t € [0,7], so we get the following

T . . P 2 T
/ f2)ds| < / olexp(iofcost +1i sint})] Codt = Qf)Q/ exp(—o - sint) dt
cF 0 0

(varrho? — 4)* (0?2 —4

To°

—— —0 for o — +o0.
(¢® —4)?

4) Both the improper integrals are trivially absolutely convergent, so it is not necessary to write

“p.v.” (= “principal value”) here.
It follows by a residuum formula, where we use the limits above,

+o00 T iz
/ 2 = lm p 2 =i
oo (224 4) o=+ Jp (22 +4) de

and then by a reflection argument,

+oo 3 +o0 3 +oo iz

1 1
/ xsma:2 dr — _/ xsmx2 dr — L 1m / Te _d
o (a7 +4) 2 ) (2% +4) 2 —oo (22 44)

1I { 7T} T
= —-Imqi-—5}=—.
2 4e2 8e2
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6 Improper integrals, where the integrand is a rational func-
tion times an exponential function

Example 6.1 Given a €0, 1], prove that

+oo azx +oo h
(a) / e do — ™ ®) / cosh ax do — 7r7m.

T i ’
o €¥+1 sinTa o Coshz cos -

az

HINT: Integrate the function

1 along a rectangle with the corners —R, R, R+ 2mi and —R+ 271,

eZ

and then let R — +o00. The integral of (b) is found analogously, but it can also be derived from (a).

Figure 12: The curve Cs,; and the simple pole 7 inside Cy;.

(a) Since e* 4+ 1 =0 for z = wi + 27i, p € Z, it follows that zo = 7 is the only singularity inside Cg
for R > 0, and this singularity is clearly a simple pole. Then we get by the residuum theorem,

eU.Z e(lZ e(lZ 1 X .
dz = 27i - res ;i) = 2w lim =2mi - — - e = 2 e,
Cr ez +1 ez +1 z—Ti €7 -1

On the other hand,

0% J R 0T g 2 ea(R+iy) ] ) -R ea(w+2ﬂ'i) g 0 ea(—R-l—iy) .
%CR 1T /—R e+ 1 er/o vy 1" y+Z/R 2T 4] H/zw e~ 1Y

Using that 0 < a < 1, it follows by some trivial estimates (though with a different argument) that
the second and the fourth integral tend to 0 for R — +o00. Furthermore, by some trivial estimates,
each of the two remaining integrals converges for R — +00, and we have

az +oo ax +oo azr
—2mi et = lim j{ c dz z/ c dr — ea'Q’”/ c dx
R—+oo Jo, €%+ 1 Coo €1 Co €1
+oo azr
= (1 — eQam)/ c dx.
e €T+ 1
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Finally, by a rearrangement,

€r = -
2
oo €71 e2omi — |

/+°° e 2mi ed™ T ™
_ (eaﬂ'i _ efmri) S 7Ta

27

(b) Tt follows from

1 1-—-
2:1:) exp < 5 a4 230)

cosh azx e et elatDz 4 o(1-a)z B exp <

coshz et 4e* e2r 41 B e 41 e 41 ’

and
1 1—

0< +a<1 and 0< a<1,
and (a) that

T cosh az 1 [t eslatl)t 1 [t e3(i-a)t 1 T 1 T

de = | S——dtts| S—dt=c s

oo coshm 2 ) o et+1 2 ) o €e+1 2 sin(%H7) 2 sin(5%n)

7 1 n 1 oo 1 + - T
2 Sin(%"‘%) Sin(%_%) 2 cos%r cos(—%) cos =2

LAN/ sPaR

Hcalendar
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Example 6.2 Prove that
+o00 1 2 3
[Ty, 2

0

by using the path of integration sketched on the figure ant then let R — 400 and 6 — 0+.

[

05 1 15

Figure 13: The curve Cﬂ% and the simple pole i.

Let Log*z denote the branch of the logarithm, which is given by

T 37
Im{Log* -, —

i.e. we choose the branch of the logarithm, for which the branch cut lies along the negative imaginary
axis. Then

(Log*z)”

1(z) = 1422

is analytic in the open upper half plane with the exception of the simple pole z = i. Therefore, if
R >1and ¢ < 1, and we denote the curve by Cg s, then

Log* 2 Log™ 2 Log™i 2 3
% (Log™2)" o o ves | L0872 5} _gpy . (L0870) _Og_l):yr-(ﬂ) =T
Crs 112 1+2 141

which in particular shows that the value of the line integral is independent of R > 1 and ¢ < 1.

The curve Cg s is composed of the interval [0, R], the circular arc Cg, the interval [-R, —d] and the

circular arc Cs (with obvious notations). If we put t = —x, then we get on the interval [—d, —R],
/5 (Log*z)? g /5 In |z| + im)? dx = /R (Int + im)? u
R 14 2 —R 1+ 22 5 1+¢2

R 2 R R
(Int) ) / Int 2/ 1
dt + 2 dt — —_dt.
/5 el N e A e
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On the circular arc Cr we put z = Re®, 6 € [0, 7], and then
|Log*z|* = |In R +if> = (In R)? + 6°.

We get the following estimate

L * _\2
/ (Log Z2) dz
Cr ].+Z

Analogously we get the following estimate of the circular arc Cs,

(In R)? + 72
R%2 -1

< TR — 0 for R — +o0.

*_\2 2 2
/ (Log 22) dz| < (In o) —ZW 7m0 — 0 for 6 — 0+,
because
1\2
(1n5)2~5:f—>0 forg—>—|—oo, ie for 0—0+.
5
Summing up we have for R > 1 and 0 < § < 1,
3 L *_\2
" f (Log™2)" 4,
4 Cr.s 1+Z

R (Inx)? R (Int)? o Int
= d dt + 2mi —dt
/5 1+ 22 x+/5 et m/5 1+ 12
R *_\2 *_\2
1 L L
,ﬁ/ 2ﬁ+/££&%@+/ﬁjggw
5 1+t Cr 1+Z Cs 1+Z
R 2 R *_\2
(Inz) 9 dt (Log*z2)
= 2/ 1+x2dz—7r —1+t2+ T2 dz
5 13 Cr

Log*z)” B nt
+/ dem/ LI
Cs 1+Z 5 1+t

Then by a rearrangement,

B (Inx)? R Int Boa w2 (Log*z)” (Log*2)*
2 dr = 2i dt = 2 - = RSNy P e ) g
/5 1+a2 ™ m/g 142 W/(S 1+t 4 /CR 1+22 /C',s 1+22

Here the left hand side is separated in its real and imaginary part.
This equation now holds for every R > 1 and § €]0,1[. The right hand side has a limit value for
R — +00 and § — 0+, independent of each other,

3
™
hence the limit value of the left hand side must also exist, and it is equal to T Hence by separating

into the real and the imaginary part we get

o0 1 2 3 o0 1
/ (Inz) dmzw— og / idaL‘:O.
0 1+l’2 8 0
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Example 6.3 (a) Given the function

F(2) 1 tanhy/z 1 sinhy/z 1
) =—. V2 _ . - :

z N z Vz  coshy/z
Prove that F(z) is an analytic function in a domain

Q=C\{z, | neNg},

independent of the choice of the branch of the square root.
(b) Find the poles {z, | n € No} of F(z), as well as their orders.

(c) Let Cp,, p € N, denote the simple, closed curve in the z-plane, which is composed of the line
segment

z=1+1t, [t] < /ptmt —1,
and the circular arc
T,: |z =p?n?, Re(z) <1
Find for every fized t > 0 the value of the line integral
1 1 #t tanh
T €ZtF(Z)dZ:T 6_4311 \/zdz
mi Je, miJe, = VZ
(d) Given that
| tanhw| < 2 forw=pre?, 0eR, peN,

prove that for every fixed t > 0,

zt
lim

p—+oo r, Z\/_

(e) Using that F(z) has an inverse Laplace transform given by

tanh/zdz = 0.

1 1+i 00 1 +o0 )
(0 =5m [ @ a= o [ i as, 120
1 —00

21 )1 s 2

where the integral is convergent, find f(t) expressed by a series and prove that this series is con-
vergent for every t > 0.

(a) We use that (y/z)” = z, no matter the choice of the branch of the square root. Then by some
series expansions,

RIS | -
cosh\/zzg)w(\/—) :7;)(271)!2

2n41 1 = n 1 n
vz V2 (n+1) (v2) 72(2n+1) Vi Z (2n+1)!
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Figure 14: The path of integration C), for p = 1.

so we have indeed defined a analytic function, which is independent of the choice of the branch of
the square root. Notice in particular that

. . sinh/z
(4) lim coshy/z=1  and lim NG 1.

We therefore conclude that

_ 1tanhy/z 1 sinhy/z 1
2z Jz  z Jz coshyz

is analytic in a domain €, which does not contain z = 0 or the zeros of cosh y/z.

F(z)

(b) The zeros of cosh y/z are found in the following way,
ﬁ=i(g+pﬂ), pEZ,
thus

2
z:—<g+p7r), pE L.

Then note that p and —p — 1, p € Ny give the same z, so we can now replace Z by Ny

When p is replaced by p — 1, then the singularities become
2 7

eN.
4 p

2o =10 and zp=—(2p—1)

Then we determine the order of z,, p € Ny. Since

1 1 sinh v/z
z coshyz  z

we conclude from (4) that zp = 0 is a simple pole.

F(z)=
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When

o T

we get

sinh VZp 40
2p\/Zp

and since

og cosh /z, = 0,

d 1 sinh , /z
lim — coshy/z = lim sinhy/z - —= = — Y% £,
z—zp dz z—2zp 2z 2\/Zp

we conclude that every z, is a simple pole.

2
1
(c) Using that z, = — (p — 5) 72, it follows from Cauchy’s residuum theorem that

1 » 1 e*' tanh/z u »
9 Cpe F(z)dz:% Cp?-sz:nz:%res(e F(2); 2p),
because only zg, 21, ..., 2, lie inside C).
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Then by RULE 1A,

inh 1 1
res(eZtF(z);zo):111%6“-8111 vz =1-1-==1

Vz  coshy/z 1 ’

where we again have used (4).

In the computation of
res (e” F(2); z,) n €N,
we shall use RULE II, because z, is a simple pole. We put

e?' sinh /2

and get by RULE II,

and  B(z) = cosh/z,

A (zn =t h 1 27t 2
res(eZtF(z);zn):ﬁ: lim {6— S \/E} = lim 29 = 2 Znt
Bl =27 Ve S gmvsl Jim ==
2z
hence by insertion,
1 a )
9 . et F(2)dz = g_ res (e” F(z); 2,) = 1+ g_ Zez”t

()

P 2
—EE exp n—1 w2t | .
2 — 2n—1 2

(d) If z € Ty, then |z| = p?n? and |/z| = pr. According to the given formula,
6) |tanh/z| <2 for |z| = p*n?.
We have on I'), that Re(z) < 1 and |z| = p?72, so we get by (6) for every fixed ¢ > 0 the following

estimate,
ezt t-1 9 o
tanh+v/zdz| < max -2 2mptm
/1“,, 2z V2 z€Ty | 24/2 ) < 3 b
4et
= — =0 for p — +o0,
p
thus
ezt
(7)  lim
pi)fﬁloo Fi” Z\/Z

(e) We conclude from (5) that

1 zt 1 /et zt 1 zt
— e F(z)dz = — e F(z)dz+ — e F(z)dz
2 Jg, 270 )y St 2mi Jr,

=1-— Z:l 5 exp <— {n—%}Qw%),
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hence by a rearrangement,

1 ettt 8 & 1 1%, 1 .
T J1—i/pimio1 ™ n:l( n—1) mi Jr,

Then by (7) by taking the limit p — +o0, p € N,

1 141 00 . 8 —+o00 1 1 2 )
8 t) = — PER(2)dz=1— — 7 S—— — - = t].
() f() 270 1o ‘ (Z) : 7T2n2:21(2n_1)2 P {n 2} i
Clearly,
112
exp({ni} 7r2t> <1 fort > 0 and n € N,

so we have the estimate
—— exp| —<Sn—=, 7
2n—1)2 °FP 2

T4 (2n-12 087

and the series is absolutely and uniformly convergent for ¢ > 0.

n=1

Remark 6.1 This example is a simplified version of a problem connected with oil drilling in the
North Sea. One wanted to find the inverse Laplace transform of

F(z;\w) = % %,

where

(p(Z) = (P(Z, )\,W) =Z= ﬁa

and where A\ and w are two positive parameters, which are fixed by some practical measurements. The
principles for solving this original problem are the same as the simplified example presented here, but
one must admit that the computations are far more difficult that in this special case, where ¢(z) = z.

¢

Remark 6.2 All though it is not required we shall here also prove (5), i.e.
(9) |tanhw| <2 forw=pr-e?, 0cR, peN.

We first introduce for p € N a real auxiliary function v, by

(10) %, (#) = cosh(2pm - cos 8) + cos(2pm - sin6), 0 eR.

Then we prove that

1
(11) cos(2pm -sinf) >0 for Arcsin (1 - %) <10] <

ol 3
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Since cos(—u) = cosu, we may assume in (11) that

. 1 T
RS {Arcsm (1 — @) ,5} .

Since sin @ is increasing in this interval, we get

1
2pm sinf € (2pm (1 — — |, 2pm| = [2p7r T , 2p77} ,
4p 2

and since cosu > 0, when u = 2pr sinf € {pr — g , Qpﬂ7 we have proved (11).

Then we prove that

1

(12) cosh(2pm cosf) > cosh (g V8p — 1) for 0| € [0, Arcsin (1 - 4—)] .

D

1
We may again assume that 6 € {0, Arcsin (1 — 4—)}7 and using that cos@ is decreasing in this
P

interval, it follows that
. 1 . 9 . 1
cos | Arcsin (1 — — = +4/1 —sin® [ Arcsin [ 1 — —
4p 4p
2
Y U TR D O I I T A
4p 2p  16p? 4p

and since cosh is increasing in R, we get

Y

cos 6

V8p—1
cos(27m cos ) > cosh (2p7r : SZ—> = cosh (g v/ 8p — 1) .
D

Now,
Yp(8 + 1) = cosh(—2pm cos ) + cos(—2pm sin @) = ¢, (6),
and

cosh (% \/Sp—l) >2 for alle p € N,

so we conclude in general by (11) and (12) that

cosh0+0=1,
Yp(8) = cosh(2pm cos B) + cos(2pm sinh) >

cosh (g V=1 1) S1>1,

where at least one of the two estimates holds for any 6.
Summing up we have proved that

(13) 9, (0) = cosh(2prm cosf) + cos(2pm sinf) > 1.
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Then we use the definitions of the hyperbolic function of a complex variable,

2 2

2

9 |sinhw|?>  cosh®u — cos?v cos® v — sin” v
[tanh w|® = Tl = 3 — - T 1T o3
| cosh w| cosh” u — sin® v cosh®u — 5 + 5 —sinv
2 cos 2v 2 cos 2v
— 1- . =1
(2 cosh —1) + (1 — 2 sin v) cosh 2u + cos 2v
Then put

w=pre? =prcosh +iprsinh =u+ v,

and apply (13) to get

[tank (pm ") ’2 =1 cosh(2p: 525(92)1)—: cscl)lsl(HQ)pw sin 6) st 1/1:(9) =3
thus
|tanh (pre’?)| < V3 (< 2),
and we have proved (9) with the even smaller constant /3. ¢
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Example 6.4 Compute

/*“’;ex x+3i i
oo T2H9 Plaz T '

3
It follows from Z2++ ; =5 that this function can be extended analytically to —3i, so we get the
z z—3i

estimate

z+ 3 1 4

= < — for |z| > 4,

2249 |z=3i] ~ |7 12l 2

hence

z+ 3t 1 4
)< — < — < fi > 4.
()| <o () <o () = il

Then we estimate the integrand by

1 z+ 3 k
— e — | < — for |z| > 4.
2249 Xp<z2—|—9> ~ |z)? 2l =
The singularities are z = +3i, where none of them lies on the real axis. We conclude that the improper
integral is convergent and that its value can be found by a residuum formula,

/+<>0 ! e vt 3 dr = 2mires ! [S ! 3
——— ex =27 X ; .
e 2249 P\az g 219 P\ T3 )

The idea here is that the sum of the residues is 0. Since oo is a zero of second order, we have

1 1
res (2’2——}—9 exp (m) ,OO) =0.

Now z = —3¢ is a simple pole, so

(L. 1 N L 1 i (i
I — X . —ol = —— X —— = — X — .
249 P\ ) “6i P\ 76 ) T P \6

The sum of the residues is zero, so it follows from the above that

1 AN i i
r ———exp| —— | ; =——exp|=].
S\ 2o P T3 ) 6 “P\6

Finally, by insertion
/*"O 1 k. O W B i s i
—— ex =274 —= exp | = =—exp|=].
o219 TP\ 6 “P\G 3 “P\6
Remark 6.3 We notice by separating the real and the imaginary part that it follows from this that
/+°° 1 T 3 Vire ™ cost
ex cos T = — COS—
o219 P\ 2249 3 “C%

/+Oo —1 e x sin 3 dz T sin ! O
X =3 rS
o219 TP\ 22+ 9 36

Download free books at BookBooN.com

109



Please click the advert

Complex Funktions Examples c-7 Improper integrals,, where the integrand is a rational function times ...

ALTERNATIVELY one may compute the residuum at z = 3i directly.
We get by the change of variable w = z — 3¢ that

1 1 e 1 1 0
res [ ——— ex ; =res | ————exp|(—);0]).
S\ P\ o= ) es w(w+6i)ep w)’

Here wy = 0 is an essential singularity, so we must find the Laurent series expansion and find the

coefficient a_; of . When 0 < |w| < 6, then
“+o0 +oo
1 1 1 1J1 w\P 1 1
s (1)1 & SiSererss)
w(w + 6i) eXp(w> w 61’ 1+Ezn' wn w{GiZ;O( ) 6 ;n! w”}

It follows immediately that a_; is the constant term inside the parenthesis, so a_1 is found by putting
p = n, thus

—+oo . .
1 1 1 11 1 1 i i
- 23 ) = = —_1)". L= ) == Z
res <22+9 P (z?n) ’> 6i Z::( VG W 6 eXp( 6i> 6 P (6)

and we get as previously that

/-HX)LeX 3 dw—zex 1 _T cosl—l—isin1
2219 TP G2 9) T EP 6) T 316 6/

WHAT'S MISSING IN THIS EQUATION?

__ You could be one of our future talents

MAERSK INTERNATIONAL TECHNOLOGY & SCIENCE PROGRAMME

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www. maersk.com/mitas

Download free books at BookBooN.com

MAERSK

110


http://bookboon.com/count/pdf/364500/110
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Example 6.5 Given the function

eiz e* + e F
= , h hz = ——
f(z) p— where cosh z 5

Define for every R > 0 the den simple closed curve
Tr=Tkp+T% +T%+T%

which is the sides of the rectangle shown on the figure.

Figure 15: The curve I'p is composed of the four straight line segments: I‘}% = [-R, R] on the z-
axis, I'%4 = R + i[0, 7], parallel with the y-axis, ['%, = [~R, R] + im parallel with the z-axis, and
I'h = —R +i[0, 7] parallel with the y-axis, and with the given sense of direction.

1) Find all isolated singularities of f in C.
Determine for each of them its type and its residuum.

2) Prove that

(z)dz = 2w exp (—g) .

I'r

3) Prove that the line integrals along I'% and I'} tend to 0 for R — +oc.
HINT: One may use that

| cosh(z + iy)| = \/sinh? z + cos? y.

4) Prove that the improper integral

T cosx
dx
o coshx

s convergent, and find its value.
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1) The numerator and the denominator are both analytic in all of C, and the numerator is # 0
everywhere, so the singularities are given by the zeros of the denominator cosh z, i.e.

It follows from

dz

cosh z;, = sinh 2, # 0,

m
zp:i{§+p7r}, p € Z.

for alle p € Z,

that they are all simple pole of f(z).

Finally,

For every R > 0 the curve I'g surrounds only the singularity zo =

w(ri{5 ) = |

T
iz } exp (—5 — p7r)

sinh z R

= (=1 liexp (*{%erﬂ}), peZ.

Then we use the residuum theorem,

. f(z)dz = 27i - res (f, z%) = 27 - exp (—g)

ol 3

The vertical line segment I‘% (possibly F‘}%) has e.g. the parametric description

z(t) = R+ it,

t €0, 7],

so we obtain the estimate

2
1—‘R

From

(z)dz

we get the estimate

2
1—‘R

f(z)dz

™ ei(R+it) ™
——— udt| < ——dt
/0 cosh(R + it) ! ‘ - /0 | cosh(R + it)|

| cosh(R + it)] = V/sinh® R + cos?t > |sinh R|,

™

T 1
< dt
- /0 | sinh R|

EEV I

e—t

for R — +o00.

have only assumed in the argument above that R € R, so we also have

Iy

f(z)dz| <

T
_
~ |sinh R|

0

for R — +o0.

112
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1
4) Now coshz > 1+ 3 22, s0 it follows from the estimate

+o0 C

1+§I2

T g cosx + b sinx
dx

~ coshz

— 00

that the improper integral is convergent.

When we return to the complex problem, then we get by the symmetry that

f(z)dz/R e dm/R CostriSin:vdx/R Ccos & d,
Tk

_pcoshz _R coshz _g coshz

and analogously,
R

£2)dz = /R ei(wﬂ‘w)- PR /R cosx + i sinx do — 67”/ cos T dr,

+r cosh(z 4+ im) _R cosh _p coshz

Tk

sinx

) over a symmetric interval [—R, R] is
coshz

because an integration of an odd function (her

always 0.

Then we get by taking the limit R — +oo in (2),

R +o00
T cos T cos T
P (——): li de=(1+e ™ da,
TP TS R—lg-loo /_R coshz ( e ) / oo CoOshzx *

SO cos e being even, we get by a reflection argument that
coshz
7r T
/+oo COS T p 1 /+oo COS T ; 2m exp (—5) . 1 T exp (—5)
T = - x = =— = .
o coshz 2 J_. coshz 2(1+e ™) 2 cosh (Z) 14+e ™
2
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7 Cauchy’s principal value

Example 7.1 Compute the (important) improper integral
+oo i
sin x
/ dx.
0 X

sin 2
It is not possible directly to apply the analytic function

in the various solution formulae, because

z

it does not fulfil any of the inequalities required for the legality of some relevant residuum formula.
Another problem is that we here only shall integrate along the positive real axis, i.e. not a “closed
curve” in C*, and we cannot talk of a domain which is surrounded by the path of integration.

Instead we shall rewrite the integrand by means of Euler’s formulze. In order to avoid the singularity
at the point 0 we shall integrate over an interval of the form [, R]. Then we get

"R R T —ix "R —R i n—g "R ix
[ o e DR B R AT
c 2i ). x x 2i | J. e x 2i | J_gr - x

If the right hand side has a limit value for ¢ — 04 and R — +o0, then the limit of the left hand side
does also exist, and we have

T sinx 1 Too giw
dr = — vp. —dx.
0 x 2 oo X
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1 .
The analytic function — e** has only the simple pole at z = 0, and this lies on the real axis, so it will

z
contribute to Cauchy’s principal value with the amount

eiz
mires | — ; 0 ) = me.
z

1 . 1 . 1
Since we have the structure — e¢'* = = "% of the integrand, where m = 1 > 0 and — has a zero of first

z z z
order at co, taking the limit R — +oo will not cause any problem, and we have checked the conditions
for the application of the residuum formula for Cauchy’s principal value. Finally, the integrand does
not have any other singularity that z = 0, so we conclude that

T gin g 1 oo giw 1 . o7
dr = — vp. —dr=—  -mi=—.
0 1 T 2

x 2 21

— 00

Example 7.2 Compute

% dz
vp. — =
P s 222 £ 322

Figure 16: The circle |z| = 2 with the evasive circular arc I'; around the point —2, and the singularity

3 inside the curve.

We first note that the denominator 2z2 + 3z — 2 is 0 for
-2

)

27731\/9+167 —3+5
- 4 -4 1

1
We see that the pole z = —2 lies on the path of integration, while the pole z = 3 lies inside the curve.
It follows by a decomposition that
1 1 1 1

2:213,-92 92 7/ 1\ 2
222432-2 2 (z+2)<z—) 2

1 111 11
5y z+2 5 1 5 242
- 5

ooy —

2
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and hence
7{ dz 7{ 1 1 1
vp. D= S —— = vD. — -
P a2 432 -2 R 2_} Z+2
3 W o 1 U -,
= = hm dz ¢,
|z]=2 2 — 5E—>0 C.4T. r. Z+2
where

C.={zeC||z|=2, |24+ 2| > ¢}
and
I.={ze€C||z+2|=¢, |2| <2}

It follows from Cauchy’s integral theorem that

d
[t
c.4r. 2 +2

so we get the following reduced expression

dz 211 1 1
vp. 5 T, 5= - t lim - dz.
|z|=2 2z +32—2 5 e—0+ H FEZ+2

We choose for T'. the following parametric description,

z=—-24¢-¢" for 0 € [O(e), 01 (e)],
where

@o(e)e—g and @1(5)—>+g for e — 0,

and where the interval of the path of integration is run through in the opposite direction of the

direction of the plane. Then we get by insertion and taking the limit,

. e _ omi 1o [P0ded®dd _omi i g
p‘7{2:2222+322 = 5 TEM fo., @ T 5 15 1900
_ 21 7 T _277@' ﬂ'i_m'
= Srsls s 5%

Example 7.3 Let C' denote the square with the corners 1, i, —1, —i. Compute

]{ dz
vp. —_—.
P CZ471

O1(e)}

It is obvious that the corners of C are the poles of the integrand, so for given € > 0 we define the

auxiliary curves

C.={z€ClzeC,|z—a|>¢c,a=1,1, —1, —i}
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0.5 1

Figure 17: The curves C' and C, with the arcs of evasion.

and
I've={2€C||z—a|=¢, z inside C}, a=1,1, -1, —i,
of positive direction. Then
dz dz dz dz
vp.f = lim = lim / —_ + / -
C Z4 - 1 € Z4 - 1 € Cs_Fl,s_Fi,s_Ffl,s_Ffi,e 24 - 1 a:l;l,fi Fa,s 24 - 1
dz
= 1. — .
sl—r{%) Z ‘/Fa,s 24 -1

a=1,7,—1,—1
By a decomposition,

1 1 1 1 a
-1 Z res<z41,a)~za—z Z z—a

a=1,i,—1,—i a=1,i,—1,—i

Then we use the parametric descriptions
T,.: z=a+ee® 6e¢ [@(a),@(a) + g] L a=1,i, —1, -,

)

in order to get
O(@)+3 jeif

dz 1 dz 1
. — — = — - d9
pr{cz‘lfl 4 Z a/F z—a 4 Z ,a/@(a) et

a=1,7,—1,—1 a,e a=1,1,—1,—1

1 . T T
= 1 Z az-§:§ Z a=0.

a=1,,—1,—i
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Cauchy’s principal value

Example 7.4 Compute

Foo dx
Vp./_oo T

The integrand

1
f(Z):m

is a rational function, and we have the three simple poles 0, i and —i. Of these, only 0 lies on the real

axis, i.e. on the path of integration. Since

23

ZBf(Z) = m — 1 for z — oo,

there exists an R > 1, such that

ZS
— <2 fi >
2(22—1—1)‘_ or |z|] > R,
thus
1 2
1) ——— | <= f > R.
(14) z(22+1)’_|z|3 or |2] 2
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It follows that vp. fj:; exists and that it can be computed by a residuum formula,

dx
x(x?+1)
“+o00 d 1 1
Vp./ 27x:27m'res (27,Z> + mires (27;())’
o x(22F1) z2(2241) z(22+1)

because z = i lies to the left of the path of integration seen in its direction, and because its weight
is 27i, while the residuum at the pole z = 0 on the z-axis roughly speaking is halved with only part
going to the upper half plane and the other half to the lower half plane.

In the present case it suffices to convince oneself that the integral is convergent, because the integrand
is an odd function, so the only possible value is 0, i.e.

/+°° dx 0
vp. ——— =0.
P oo T (22 +1)

For COMPLETENESS we compute

1
1 o 1 1
= i)l =lm& =—=_ REGEL II
res (Z(Z2 + 1) 3 7/) lm 222 2a ( )7

1
where P(z) = B and Q(z) = 22 + 1, and

1 . 1
res (m 3 0) = ll_)n% 22—_“ = ]., (REGEL :[A)7

and we have (CONTROL),

/+00 du 2mires 1 i | + mires ! 0
vp. —— = 27 _— T —_—
P oo T(22H41) 2(2241) 22(22+1)°

Example 7.5 Compute

/+°° dx
vp. —_— .
P oo T (x®+1)

The integrand

1
f(Z)Zm

is a rational function with a zero of fourth order at co. It is analytic in all of the complex plane except
for the simple poles

N | —
DO —
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Figure 18: The four poles, of which two are lying on the path of integration, i.e. the real axis.

cf. the figure. We conclude from
4
4 B z

that there exists an R > 0, such that

1 for z — oo,

2
|24 f(z)| <2, dvs. |f(2)] < g for |z| > R.
2

Now, a = 4 > 1, so Cauchy’s principal value exists. In fact, we have simple poles on the x-axis, and
a > 11in (15). The value is given by the residuum formula

/*00 dz o o 1 1+,\/§
vp. ———— = 2mites | ————; = +i-——
P o T(T341) 2(z2+1)7 2 2

. 1 ) 1
—+mires <Z(Z3_|_1), 0) + mires <2(23—|—1) 5 —1) .

Then by RULE 1A,

! 0 li L 1
res| ——5—, = lim — =
2(z2+1)7 =023 +1
The other two poles satisfy the equation 2§ = —1. Putting

PE) =1

and Q(z) =2 +1,

then P(z) and Q(z) are analytic in a neighbourhood of zy, and since

1 P(2)

S Q)
it follows from RULE II that

1\ (P \ Pl 1 1 1 1 1
(i) == (a0 o)~ g % Mo E
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1 3
This is true for both zyg = —1 and for z5 = 3 +1 g, so it follows that at

v /—HXJL = 2mires ;1—&—2@
P- oo T(x341) 2(z3+1)7 2 2

1
+m’res(m O>+7rzres< z3+1 >

1 1
— o 2 . N D
m( 3)4—772—1—71’2( 3) m( 3—1— 3) 0.

Note also that since the integrand is real, the result shall also be real.

Example 7.6 Compute

oo dy
vp. w7

Figure 19: The poles of the integrand. Two of these, +1 lie on the path of integration.

The integrand f(z) = is a rational function with a zero of order 6 at oo, i.e.

6 _
56
Af(2) = 5 1—>1 for z — oo.
Hence there exists an R > 0, such that
1 2
()| = 2’6—1‘_W for |z| > R.

Since f(z) has only simple poler and da a = 6 > 1, it follows that Cauchy’s principal value exists and
is given by the following residuum formula,

too g ) 1 1 V3 1 1 3
Vp.[oo -1 27‘&'2{1‘68(26_1,54'17 + res m,_§+27
, 1 1
i e (1) e (g 1) |

Download free books at BookBooN.com

121



Please click the advert

Complex Funktions Examples c-7 Cauchy’s principal value

If 2§ = 1, then we have by RULE 11,

1 1 1z 1
res ;2 = —F == —F= = = 20.
1) 7622 628 6

We can compute all four residues by this rule, so

T da 1 IERVE] IERVE] o1
vp.[m i 2wzg{<§+27>—|—<—§+17>}—|—m~6{1+(—1)}

27r\/§ _ s

1
= 2m’-€~z\/§+0=—

6 V3

As a very weak control we see that since the integrand is real, the result is also real.
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Example 7.7 1) Prove that the Cauchy principal value

2)

+oo iaw_l

—00
exists for every real number a, and show that

K(a) = —7lal.

Compute the integral

T cos ax — cos bx
AT S da,

X

— 00

expressed by K (a) and K (b).

First note that the integrand

etaz _ 1

22
has only the pole z = 0 (and oo as an essential singularity). The numerator has a zero of first
order at z = 0, hence z = 0 is a pole of first order. From ’ei‘”| <1 for a > 0 and Im(z) > 0,
follows the estimate
eiaz -1 ‘

2
5 < = for |z| > R and Im(z) > 0,

RQ

z

where we also have assumed that a > 0. Thus the conditions of the existence of Cauchy’s principal
value are fulfilled for a > 0, and it is given by a residuum formula,

+oo ia:cil iiazil 1 d )
K(a) = Vp/ioo %dzﬂ’lres(%,o)WZFZII_)I%E(EZUIZ].)
= 7ilimiae'** = —ma = —nlal.
z—0
If a <0, ie. a = —|a|, we get by a complex conjugation and the result above that
oo jiaz _ +oo ilal _
e 1 e 1
K(a) = Vp./ dezvp./ Tdm:K(|a|) = —7lal.
— 0 — 00

Summing up,

+oo eiaac -1

K(a) = K(la|) = vp-/ ———dr=—nla, ack.

—00

The result is real, so

“+oo iaat_l +oo 3 —1
K(a) = vp. Re{/ era:}z Vp./ %dm
“+o0
cos(az) — 1
/ Tdmz —lal.
—0o0
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cos(az) — 1
2

has a removable singularity at x = 0, and we can remove “vp.” in front of the integral, and we

have the estimate

The numerator cos(az) — 1 has a zero of at least second order at 0, so the integrand

cos(ax) — 1 - 2
2 = 22

for |z| > 1.
x

x
2) Clearly, the zero of the numerator at = 0 has order 2, so the singularity at 0 is removable. Since

cos(ax) — cos(bx)

2
<= for x # 0,
x x

and the integrand is continuous with a continuous extension to 0, we conclude that the improper
integral exists and that it is given by

/+°° cos(ax) —2 cos(bx) dr — Tim e /+°° Cos(ax) - cos(bac) iz
PN e—0+
—  m e /+°° cos(ax) dx ~ m e /+°° cos( b:c -1 I
e—0+ e—0+
+oo o —+oo b
= Vp./ 7(:08(&? dx — Vp./ 7%8( :1:2) dz
oo x o x
_ /+°° cos(aa;) -1 d — /+°° cos(bxz) -1 da
oo x oo x

— K(a) — K(b) = —n(la] - b]) = 7(|b] — |a]).

Example 7.8 1) Find the poles, their order and their residuum for the function

Log 2

fz) = (z-12(:—2)(z—3)°

2) Use the calculus of residues to find Cauchy’s principal value of the integral
“+o00
vp. / f(z) dx,
— 0o

and then compute the integral

/0 da
oo (= 1)2(x = 2)(z —3)

1) We have a branch cut along R_ U {0}, so it only makes sense to find the poles of the function
outside this half line. It follows immediately that z = 2 and z = 3 are simple poles. Furthermore,
(2 —1)? has a zero of order 2, while Log z has a zero of order 1. Hence, z = 1 is also a simple pole.

Download free books at BookBooN.com

124



Complex Funktions Examples c-7 Cauchy’s principal value

The residuum at z = 1 is computed by considering z = 1 as a pole of at most order 2,

. - l imi & = lim i ! :
res(f;1) = 1 ;Hldz ((2_2)(2_3)>_21;H1{L0gz dz ((2—2)(2—3)>+Z(Z—2)(Z_3)}
1 1
- 0+1-(1—2)-(1—3):§'
Then we get
gy g2
res(f;2) = G12 (2-3) In2,
and
res(f;3) = Log 3 = ! In 3.

B3-12-3-2) 4

Figure 20: The path of integration Cr . = C47%.

2) Choose the path of integration C'r . as the one given on the figure, where 0 < ¢ <1 <3 < R. We
shall allow the path of integration to pass through the simple poles at z = 1, 2 and 3, and they
contribute to the integral with 7i times their residues. We shall further assume that the part of
the path of integration which runs along the negative and real axis, actually lies in the upper half
plane above the branch cut. It follows from these assumptions that

(2)dz = w{res(f;1) +res(f;2) +res(f;3)} = i {1 —In2+ ! ln3} .
CRr.e 2 4

We get the following estimate along the circular arc |z| = R, z = Re®, for R — oo,

T Log z InR+m PR
/9:o<z—1>2<z—2><z—3>dzS(R—l)?(R—m(R—z) =0

Along the circular arc |z| = ¢, i.e. z = ce’?, we get the following estimate for £ — 0+,

g Log =z [Ine| 4+ 7
/9:0(2—1)2(2—2)(2—3)dz = T-9P2-96-9
e|lne| + e
1oy

s e

2-e)B-¢) =0,
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where we have used that e|Ine| — 0 for ¢ — 0+ due to the rules of magnitudes.

Hence we conclude by taking the limits € — 0+ and R — +o0 that

e 1 1
vp./ f(m)dxzwz{§—1n2+zln3}.

This implies that

(1 1
wz{§ —ln2+1 ln3}

- tm  lim € Log x . R Log x .
- eLomLm{/_R e e L (x—l)z(m—2><x—3>d}

lim i /_E+/R In 2] dz +1i /_E da

= lim lim x +am .
e=0+R—+too | J_p Jo (x—1)%(x—2)(z—3) _g (x=1)2(x —2)(x —3)
Then by taking the imaginary part and then the limits,

0 dx 1 1
=~ —In2+- In3.
/_oo<x—1)2<x+2><x—3> g Mg
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Cauchy’s principal value

As a CHECK we see that the latter result can also be derived by a decomposition and a simple
integration. It follows from

1
(x —1)*(z - 2)(z - 3)
1 1 A
T 020 -3) @-1? z-1
1 1 1 1
o122 -3) -2 B-12B-2) z-3
11 A 111
B §(x71)2+:£71_x72 40-3
that
A 111
xfl_x72+1x73
1 1 1

3
hence A = T and then by insertion and a usual integration,

2 (z—2)(zx —3)

(x—12(x—-2)(z—3)
—(z—-1)(z—-3)+r—-3+2

2 (z—1)2  2(x—1)2x—2)(z—3)
—r+3+1

2(z —1)%(z — 2)(z — 3)

C 2(z - 1) (z—2)(x - 3)

—r+4
2z —1)(x — 2)(x — 3)

~1+4 1 —244 1 ~3+4 1
20-2)1-3) z—1 22-1)2-3) z—-2 2B-1)3-2) z-3
31 Lo

4 2-1 z2-2 4 -3

o

(z —2)(x -
1 1 3 1
lim |—= —— + 2 In|z—1|-In|z—2| + ~ In|o—
R—1>r£100|: 371 T mlemt=njz=2f+ g Inf 3'}
! ! +0 12+113 li L +
—_ —1In -~ In3— lim {—=—
2 (-1 4 z——00 2x—-1

1 1
5 —ln2—|—1 11137

in accordance with the previous result.

= 2) 3)/000{%(x—11)2+§x—1

1

(x—1)3(a:—3)’}

4T w2
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Example 7.9 Compute
+o0 eia:ﬁ
vp./ﬁoo —:v(x2+7r) x

Then prove that the improper integral

/+°° sin (V) -

oo X (24T

exists and find its value.

The integrand

ei? N
f(Z)— 2(22—1—71')
has the three singularities (they are all simple poles),

0, i, —i/T,

and it is analytic in any other point of C. If Im(z) > 0, then |e¢’* V™| < 1, and since
3 VT 22
= |e'* V™. <C f > R and I >0
|2%f(z)| = |e p or |z] and Im(z) > 0,

where R > /7 is fixed, we conclude that

(15) [f(2)] < zi|3 for [2| > R and Im(z) > 0,

(note that we cannot here allow Im(z) < 0).

Remark 7.1 By a more careful analysis, which shall not be given here, one can show that one can
choose

RQ
C = ,
R2 -7
because
22 z2+7r—7r T ™
2 = 2 R =122 -1
Z4+T 24+ ze+T Ze+T

is maximum for z = i R. {

The pole 0 on the real axis is simple, and we have a = 3 > 1 in (15). This implies that Cauchy’s
principal value exists and that it can be computed by a residuum formula,

400 eizﬁ g o eizﬁ \/_ ) eizﬁ 0
Vp\/_()o m LT — 2T 1Tres m,l T +7TZI'ES m,
etz VT etz VT _ 2me-e "

=270 lim ———— i =
szi%z(z+iﬁ)+ﬂzz%z2+7r —2m

1 . o
+7rz~;—z-{l—e }
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Now

i sin (/7 x) 1

im ————= = ,
=0z (2?2 +7) /7
so we conclude that the integrand

“+oo 1
[
— o -1

because we have for |z| > 1,

sin (/7 x)

X

is continuous, so

sin (/7 - x)
+

x(z?+ )

sin (/7 )
x(x?+ )

sin (/7 x)
x (22 4 )

1
dx+/ 5 dx,
|z|>1 &7+ T

<1, reR.

It follows from the continuity that the former integral exists, and the latter integral is of Arctan type,
i.e. in particular convergent. Hence we conclude that the improper integral

/+°° sin (V) |

oo X (224 T) *

is convergent and that its value is given by

+o0 —€ +o0o
vp. / sin (ﬁx) dr = lim / / sin ( dx .
o (224 M) e—0+ x2+7r

We have
. ol too gievT B 20 cos (z /7)) + i sin (z /7)
(16){1—6 } = Vp./_oo —x(z2+ﬂ_)d:c—vp./_oo Py PR dx
B +20 cos (z 1/7) +0 sin (x /7) . ; +0 sin (z \/7)
R L - TR B T

because “vp” is superfluous on the sine integral according to the above. If one wants to be particular
careful, then notice that we have by the definition,

w. [ :” o= ([ 4] +°°> T o

because the integrand is an odd function in z, and because the improper integrals f:; ---dr and

f;_oo .-+ dx clearly exist.

Then we conclude from (16) that

/+°° sin (2 /)

oo (224 )

r=1—e¢".

Download free books at BookBooN.com

129



Please click the advert

Complex Funktions Examples c-7 Sum of special types of series

8 Sum of special types of series

Example 8.1 Find the sum of the series

+oo 1

and then derive the value of the important sum

2 20+ 12

1\ 2
Putting f(z) = ( - —) , 1t is obvious that f(z) satisfies an estimate of the type |f(z)| < ‘%
z

[\)

1
for |z| > 1. Since zop = = ¢ Z is the only pole, the conditions for the application of some residuum

formula are satisfied. The auxiliary function

cot(mz)

Na}
—
™0
~—
i
™0
W
|

o
Qacha?
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1
has at most a double pole at zg = ok so we may apply Rule I with ¢ = 2. This gives

res

(‘:’“771Z))2; - ﬁ 3%%{<z— %)Qg(z)} = lim (= {1+ cot?(r2)} 7) = —.
2

2
Finally, by insertion into the residuum formula for the sum of a series of this type,

It follows by a small rearrangement that
) +oo 1 +oo 1 +oo 1 +oo 4
2 2 2
and then finally
+00

Z;Jﬁ
(2n+1)2 8"

n=0

Remark 8.1 Since any number m € Z can be written as

m=2"2n+ 1), for uniquely determined r € Ny and n € Ny,

1
and since the series Z:g — 1s absolutely convergent, it is easy to derive that the sum is given by
n

—n? B = (2n+1)? 0 22 £~ (2n+ 1) (22)? — (2n+1)?
too 2 2

1 1 1 1 1 ™ T
D T NI - AR
{+4+42+43+ };J(Qn—&-l)Q 1_1 8 6’

which is a very important result in the applications. ¢
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Example 8.2 Find for every given constant a > 0 the sum of the infinite series

2 2"
—n +a

We can obviously for e.g. |z| > 1 find a constant ¢ > 0, such that we have the estimate

1
22 4+ a?

C

|27

If(2)] =

IN

which proves one of the assumptions. Since f(z) has only the two simple poles z = +ia ¢ Z, the
other assumption for the application of the residuum formula is also fulfilled. Since cot(+ima) # 0, it
suffices to compute the residues

1 1 1 1
res m Jwa | = % and res m, —ia | = —%

Then we get by the residuum formula,

“+o0
1 1 . 1 .
Z m = -7 % COt(lT('a) — % COt(*Zﬂ'Q)
_ _r coslima) m cosh(ma) _m o,
ia  sin(ima) ia i-sinh(ra) a
Thus
“+o0 +oo
1 1 1 1 1 s
—_—_— — —_—— = —= - th .
Z n?+a? 2a? * 2 Z n?+a?  2a? + 2a <° (ma)

n=0 n=—oo
If @ = 1, then we get in particular

Jil 1—4—7Tcoth
— ==+ = .
nz 2 2

n=0

Example 8.3 Let a > 0 denote a constant. Find the sum of the alternating series

+ n
ZOO (-1
n2 +a?’

The underlying function f(z) = is the same as in Example 8.2, so we have already checked

22 + a?
the assumptions of the relevant residuum formula in Example 8.2. The only difference is that the
auxiliary factor cot(mz) has been replaced by 1/sin(7nz), so it follows immediately by insertion into

the residuum formula that

+§(—1)”_W1 1 1 1 o711
n?+a2 2ai sin(ira) 2ai sin(—iwa) | da sin(ima) @ sinh(ra)’

n=—oo
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Since

(=D ="

(_n)2 +a2 - n2 +a2’

it easily follows that

n?4+a? 2a%2 2
n=0 n=-—0oo

n?+a? 2a2  2a sinh(ra)

*i (=1)" 11 i" (=1)" 1 1

If in particular a = 1, then

*i(—l)"_lJr T
n2+1 2  2sinhnw’

Remark 8.2 Even if one may use the theory to find the sum of many convergent series, where the
term has the structure of a rational function in n, one should not be misled to believe that this is true
for every series of this type. The simplest example is

+<><>1

ZF (=~ 1,202),

n=1

the exact value of which is still unknown. ¢

Example 8.4 Let a € Ry \ N. Find the sum of the series

+oo 1

D

n=0

The degree of the denominator is precisely 2 larger than the degree of the numerator, so the series

+oo 1

D wa

n—=-—oo

is convergent when 2a ¢ N, and the value is given by

R | R | 1 k
Z 7712*(12:22()—n27a2+a_2:_7rzl(:0t(ajw) res (f; aj;)
n= =

n=—oo

- {cot(m) res <%(2+a)(za) ; a) + cot(—ar) res (m : a>}

1 1 ™
= _r {% cos(am) + 5y cos(—aﬂ)} = cot(am),

hence by a rearrangement,

JFZO:O LI T cot(am)
n2—a2 242 2a '

n=0
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The expression (the series)

+oo 1

P

n=0

2 2

1 1
is continuous in a € R4 \N, so this formula also holds for a = p+ =, p € Ny. Since cot ((p + —) 7r> =

0, p € Ny, we obtain in this case

= 1 1

2 ne ne

2 2 7=
n=0p2 _(p+ = 2(p+ = 2 p—i—1
2 2 2

ALTERNATIVELY,
t 1
res(%;ia)—o fora:p+§,
zZe—a

because the singularity is then removable.
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Example 8.5 Find the sum of the series
= n?+dn+ 5
First we note that

n? +4n+5=(n+2)*+ 1.

We use that
—+oo

S =1 T cotnn
n:0n2+1_2 2

is the sum of a known series, so by a small rearrangement,
= 1 = 1 =1 1

D D Dy e e R Dot

n=0 =0 n=2

Example 8.6 Find the sum of the series

—+oo

1
Z n?+1)(2n+1)"

n=—oo

+oo

1 s
E — =1+ = hr.
+ 1 +2cot7r

n=0

The polynomial of the denominator is of degree 3, and it does not have any zero in i Z. We therefore
conclude that the series is convergent, and its sum can be found by a residuum formula. The poles

are
, 1
7, —1, —5,
thus
= 1
n;oo (n2+1)(2n+1)

- {cot(iﬂ) T8 (m Z)
1

[EERICFE "’)
res (e 1))

+ cot(—im) - res (

|

. cos(im) cos(—im)

= {Sin(iw) (i+0)(2i+1) " sin(=im) (=i—i)(=2i+1) +O}
. coshm 1 1 coshm 1 1

- {sinhw i 2i(1+2i) | sinhm (=) (—24)(1—2i)

— T coth LI S
T O\ T "1 2 T 5

1+2i+1-2¢ «

= 3 coth .
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1 1
Remark 8.3 The function m has a simple pole at z = 5 so the auxiliary function
cot(mz) . . 1 L . .
5 /5. o has aremovable singularity for z = — . This is in agreement with that the residuum
(22+1)(22+1) 2
1
of the auxiliary function is 0 at z = —5 O

Example 8.7 Find the sum of the series

Ji’" o2n + 1
S (P +1)(Bn+ 1)

The corresponding analytic function is

i Newey )

which has a zero of second order at oo, and the simple poles

1
a; = 755

as =1, az = —1,

where 2a; ¢ Z. It follows that the series is convergent with the sum

+oo

2 1 1
n:Z_OO (n? + ;L)—(’_Sn 1) = {COS (7§) res (f; §) + cot(im)res(f; 1) + cot(—im)res(f; z)} .
Here,
2
1 1(12z+1 1 —g +1 1
res| f; —= ) == _L _ L
3 312241 o1 3 1 ) 10
3 § +
es(f31) S 241 —1-7i
res )= _ _
7 (z+9)Bz+1) ], 2i(3i+1) 20
res(f;—i) = _ 22+l =241 14T
Finally,
' h
cot(im) = C?S(Z,ﬂ-) = 22T coth,
sin(im) sinh 7

and

cot(—im) =i cothm,
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so the sum is

+o00o . .
2n+1 1 1 —-1-17: —1+7

§ — gl = .= _icothrm- i cothr -

L D) (2n 1) 77{ J3 10 Lo ( 20 )H“’t T ( 20 )}

=1 ;+icoth7r~ fﬁ :W—\/§+7—W~coth7r.
10v3 10 30 10

Example 8.8 Prove that

400 400
)" 1 S
2 (2n+1)3 52 (2n+1)3  32°

n=0 —o0

When we split the sum and change the variable n = —m — 1, i.e. m = —n — 1, then
400 n +oo n -1 n +0o0 n +oo —m—1
(=1 _ (1) =" _ (=1) (1)
n;m (2n+1)3 ; (2n+1)3 + n;oo (2n+1)3 TLZ:% (2n+1)3 i mZ::o (—2m —2+41)3
+oo n too m—4 +oo n
-1 -1 -1

ST D IR

= (2n+1)? = (2m+1)3 — (2n+1)°

and the first equality follows.

1
We have a triple pole at z = —5 and the series is clearly convergent, so we obtain by a residuum

formula,

“+o00
O s L]
n;m (2n+1)3 ((2,2 + 1)3sin(mz) ’ 2> ’

A small rearrangement gives

1 1 1 1
(22 +1)3sinmz 8 ( 1)3 sinmz’
z+ =
2
s0
400 n 2
Z (-1 T 1 I d 1 T d [ cosmz
——— = ——. = lm —|——|=— lim 77—
(2n+1)3 8 2! .-_1dz? \sinmz 16 -—-1 dz \sin’7z
n=—o00
2 sin 7z cos? 7z 2 T w3
= 7 lim {-n o SRS SRy ) -
16 zﬁl{ sin? 7z sin® 71'2} 16 { (-1 } 16

Summing up,

*f R S N ) N

o (2n+1)P 2 A~ (2n+1)% 32
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Example 8.9 Find

+oo
(=n"
Z (2n+1)%

n=0

1
We see that z = —5 is a four-tuple pole of

1 1 1
f(Z):m:TG‘ﬁ,
(Z+2)
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so the sum is computed by a residuum formula,

(2n+1)* 2 £~ (2n+1)* 2 0\ 2
n=0 n=-00 16 - (z+ —)
t 1 1 d3
= " ores sz)b == cot(mz)
32 1 2 32 3! .—1dz3

T . d? 1 w2 ) d ([ cos(mz)
= - lim —— -7 — = lim §—2m — ( ——=
6-32 .1 dz? sin®(7z) 6-32 ;-1 dz \ sin®(7z)

o {_min(m)_ .cos2(m)}_7r4

sin®(72) sin?(7z)

Remark 8.4 It follows that

+oo +oo +oo j +oo
1 1 1 1 1 (=1)™ 1 (=)™
[ — 1 _ — _ i P S — _ N 7
S {retarsrw ) S e oL (5) Seoa
B 1 d _ 16 7 _ rd o
B 1 96 15 96 90
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Example 8.10 Find the sum S of the series
+o00 1

>

—_—
1
n=0 _
(n + 2)
It is well-known that
+oo 1 2

> T = g

2 T qQ
o (2n+1) 8
hence

+oo +oo 2 2
1 1

Y oy =4 S

(2n+1)2 8 2

2
1
n=0 — n=0
(n + 2)

Example 8.11 Prove that the series
+o00 1

S HICH

is convergent.
Then find the sum of the series.
Finally, find

“+oo

1
Z (4n —1)(4n —3)’

n=1

where we only sum over the positive integers.

1 3
Here, <n — 4> (n — 4) is a polynomial of second degree, which is not 0 for any n € Z. Hence, the

series is convergent and the sum is given by a residuum formula,

Z 1 ~ ) s cot(mz) 1  res cot(mz) 3
o (N (o 3) oYL o3y 4 AV AR
4 4 4 4 4 4
cot il cot 3—7T
= —7m < lim COt(W? + lim COt(ﬂ-lz) =7 14 + T 4 =-—m(-2-2)=dr
Lt S LG P _Z z
4 4 2 2
Then we note that
XO: 1 B *f 1 B i‘” 1
= (An—1D(n-3) A (-dn-1)(-4n—3) = (n+3)(dn+1)
B i’f 1 B i" 1
2 e+ -DA{n+1}-3) A (dn—1)(dn—3)
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hence
RS 1 1<% 1
;(471—1)(471—3) B 5;(471—1)(471—3)

ALTERNATIVELY, use Leibniz’s series,

LN 17+°° (=1)"
1 rctan 72271—&—1’

n=0

where we have added parentheses in a convergent series, which is always possible without destroying
the convergence or the limit value. Then

w_f(—1)"_11+11+11++1 A
4 02n—|—1_1 3 5 7 9 11 An—3 4n—1

& 1 S Un-1)-(n-3) X 1
- Z<4n—3_4n—1)_ (4n —1) - (4n — 3) _22(471—1)(471—3)’

n=1

hence
+oo 1

Z (4n —1)(4n — 3) 8

n=1

Finally
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Example 8.12 Find the sum of the series

+o00 1

>
n=-—oo N* — —

9
Also, find the sum of the series

7;2::1 (3n)?2 —1
Let
P(z) 1
I&=am =41
23
where
5 1
P(z)=1 and Q(z) =2 — 9

The denominator has a degree which is 2 bigger than the degree of the numerator, and the zeros of

1
the denominator are z = +— ¢ Z. We conclude that the series is convergent, and that is sum can be

found by a residuum formula,

= 1 cot(mz) cot(mz) 1
Z T = ~Tqres 1 +r 1073
n=—oo n? — — 22— = 22— = 3
9 9 9
cot cot ( W)
_ 3 3 3T T_
= T g + _2 =-3 2 cot 3= 7T\/§
3 3
Then by a small rearrangement,
o 1 =X =
—mV3= ) =T 2 T=9H+18) o5
n=-—oo 7’7,2 — = — n=1 ’I’L2 — = n=1
9 9
SO
“+o0 “+o0
1 1 1 3
3 =3 —77iz0,1977.
— (3n)?2 —1 —~ In2—-1 2 18
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Example 8.13 Given the function
222+ (20— 1)z —1i
(1624 — 1) (22 +1)*

f(z) =

(a) Determine the singular points in C U {oo} of f(z) and their types. Then find the residuum of
f(z) at z = oco.

(b) Compute the complex line integral

sz|—3 f(z)d=.

(c) Find the sum of the series

Z :
—
et 16n 1

R

] \
H I Y

= g3 65 1
\ \ / !

Figure 21: The four simple zeros and the two double zeros of the denominator of f(z).

(a) The denominator
(1624 —1) (22 +1)" = (422 + 1) (422 — 1) (z2 + 1)

1 1
is zero for z = +i (double zeros), and for z = i§ and z = iii (simple zeros). The numerator

can be written

222+ (20— 1)z —i=2(2"+1i2) — (2 +14) = (22 — 1) (2 +1),

i.e. the numerator has the simple zeros z = 3 and z = —i. We therefore see that f(z) can be
reduced in the following way,
) 222+ (2i — 1)z —i (22 —1)(z +1)
z) = =
(1624 — 1) (22 +1)° (422 4+1) (22 = 1)(22 + 1) (2 +9)2(z — 1)?
1

(2z+14)(22 — )2z + 1) (z + i) (2 — )%
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It follows that z =i is a double pole, that

11 1

Ty g

1
are simple poles, and that z = = is a removable singularity. Finally, we have a zero of order 6 in

oo. In particular,

res(f;00) = 0.
(b) All finite singularities lie inside |z| = 3, so

f. f(z)dz:—%* f(z)dz = —2mires(f;00) =0,
|z]=3 |z|=3

where § * denotes a closed line integral with the opposite direction of the orientation of the plane,

e §"=—9§.

.
s &
= F
| \" Y

27
(22277 & " a-;‘

FIRST CONTACT

Get matched to top business
employers via intelligent emails
landing in your inbox.

PLANET CAREER ADVICE Milkround.com: rated-the
Inhabited by insights into #1 graduate recruitment

business careers and orbited M=
by application advice. website in the UK Graduate

MILKROUND SYSTEM . ‘Careers Survey 2009 of

Become a business star with B e o : 16,000 university finalists.
internships, placements, k. AR 7

graduate jobs & schemes

from leading companies.

) " < ;
www.milkround.com . M I I I“‘ﬂ “ n [I
_ - ( H ]|

Download free books at BookBooN.com

144


http://bookboon.com/count/pdf/364500/144

Complex Funktions Examples c-7 Sum of special types of series

(c) We have 162* — 1 =0 for

1 1 i i

2’ 27 27 2’

where none of the roots belongs to Z. Furthermore, we have a zero of order 4 at oo, so the series
is convergent, and we can use a residuum formula,

z =

*i 1 1 i’" 1 1 L1 *f 1
Zl6nt—1 2 £ 16n'—1 2 16-01—1 2 32 £ 1\*
()
1 > cot(mz) 1
= §—§Zres ﬁ; ="
n=0 A=
(=)
Then consider the function
t 1
_cotmz) gy, = L
1 2
A2
(=)
1 1 . . .
It follows that — and —— are removable singularities, and since also
s cot(mz) | = cot (mzy,) _ Zncot (72n) _ Zncot (72n) 2y cot (n2),
y 1 423 424 4.1
S (§> 16

t . . . Cosh_
res sz)biz =4-3-cot<7r£>:2i- 7%:2(:0ch7
a (1) 2 2 2 sinh§ 2

hence by insertion,

coth — ~ 0,0718.

o]
ol

= 1 1 b s T 1
= o _ T ocothE 42 th—}:—
;1671471 2 32{ cothg H2cothgy =g
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Example 8.14 Given the function

f(z)

9(z) = m7

where f(z) is analytic in a neighbourhood of the points z = +i. Furthermore, it is also given that
f(=i)=—f))#0, and  f'(=i)= f().
1) Show that g(z) has poles at the points z = i, and indicate in both cases the order of the pole.
2) Prove that
res(g(2); 1) = res(g(2); —i).
3) Show that the series
RO |
= (n2+1)?
s convergent and find its sum.

1) The denominator (22 + 1)2 = (2—1i)?(z+1)? has the double roots +i, and since f(—i) = —f(i) # 0,

and f(z) is analytic in a neighbourhood of the points z = +i, we conclude that

AC)
(2) = EREE

has double poles at z = =+i.
2) Then we find that

res<g<z>;¢>=l,mgd%((f<—z?)=nm,{(f'<?) PG }:—lf’u)—if(i),

zZ— Z+Z)2

and
P Y A (5N W O C N (C)
ot = i () = i {5 -2
RN SRR DI AN By
= LT L) = P~ T0) = res(g(2);0).

1
3) The poles of e Are z = Fi (double poles), and none of them lies in Z. Since we have a
z

zero of order 4 > 1 at oo, it follows that the series is convergent, and we can find the sum by a
residuum formula,

= 1 o cot(mz) . cot(mz) .
nzz_oo 7(1 n n2)2 = -7 {res <(22 n 1)2 ; z) + res ((22 n 1)2 ;1 .
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If we put f(z) = cot(mz), then

and
f(i) = cot(mi) = —i cothm #£ 0,

f(=i) = cot(—mi) =i cothm = — f(3),

f/(i)zf . N 7 . = :f/(ii%

sin? (i) (i sinhm)?  sinh?7

which is precisely the case of (1) and (2). Hence we get

(14+nn) 224 1)

g{ T ti(- icothw)}:

sinh? 7

n=-—oo

+oo
1 t
Z — —7r-2res<(co(7wz)2;i>:_27r.

w2 1
2 sinh®7 2

(-1)- i +isay

+ il coth .

"MPV'# . |

‘n—-
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Complex Funktions Examples c-7 Sum of special types of series

Then finally,

+oo 1 1 +oo 1 0 1 1 +oo 1
—— = —+ — == 1
S~ H e ) S e
w2 1 +7r th +1
= ———5—+—cothm+ ~.
4 sinh®r 4 2

Example 8.15 Prove that

+oo 1

f(t) = Z (12

n—=—-—

is convergent for every fized t € C\ {pm | p € Z}.
Then find f(t) for every t € C\ {pm | p € Z}, expressed by elementary functions.

t
We define for every fixed t € C\ {pm | p € Z}, i.e. for —— ¢ Z, a function F(z;t) by
7T

1
f(Z;t):m-

t
Then F(z;t) is analytic for z € C\ {——}.

™
Since for z # 0,

2

22 1 1 1 f
——==|— ] - = or z — oo,
(rz+1t)2 72 1+i 72

T2

22F(z;t) =

1
we conclude that there exists a constant R, for every ¢ > —, such that |22F(z; t)| < cfor |z] > Ry,
T
i.e.
c
|F(z;t)] < — for |z| > Ry.

|22
t
If —— ¢ Z, then it follows directly that the series
™
00 1

f(t) = Z Tt )2

n—=—

Download free books at BookBooN.com

148



Complex Funktions Examples c-7 Sum of special types of series

is convergent, and we can find its sum by a residuum formula,

t

[t = n:ZiOF(n;t):—wres (cot(wz)F(z;t);—;)

e cot(mz) ~ t _ . 1 - d . t > cot(mz)
N (mz+t)2" w) 1l .-t dz 7r (mz +1)2
T

= —— lim icot(wz):fl lim {L}

71'2 z——L dz [
s s
1 1

sin?(—t)  sin?¢’

2
t
where we have applied RULE I with ¢ = 2. Note that we shall use the factor <z + —> , and not
T

(72 +t)%, in the denominator. It is of course also possible directly to prove the convergence.

Example 8.16 (a) Prove that
+00 ¢
ft) = Z 12 _ n2p2
is convergent for every fixed t € C\ {pm | p € Z}.
(b) Express f(t) for every t € C\ {pm | p € Z}, by elementary functions.

(¢) Finally, find

—+oo
t
g(t) => a2 teC\{prpel},
n=1

expressed by elementary functions.

t
(a) Since t? — 72n? # 0 for every n € Z, when t € C\ {pr | p € Z}, it follows that PR is
—m2n
defined for n € Z. Furthermore,

¢ |t]
2 _r2n2| = n2 for |n| = N,
so we conclude that
+oo +oo N +oco
t t t It]
Z 12— r2p2 Z 2 _2p2| = Z 2 12n2 +2 Z 2 < 00,
n=—oo n=—oo n=—N n=N+1

and we see that we could give a direct proof of the convergence.

ALTERNATIVELY we check the assumptions of the residuum formula, because they at the same
time assures the convergence, and we also obtain the sum.
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Consider for every fized t € C\ {pr | p € Z} the function

4 t 1
Ft) = 3——5 =

12 — 12,2 7?' N
22— -
™

t t t
This is analytic for z € C\ {— ; ——}. Since we have assumed that £— ¢ Z, and that F'(z) is a
T oow 7r

t t
rational function with a zero of second order at oo, there exist constants ¢ > ‘—2 and T > ’— ,
T T
such that
c
F(z;t)| < — for |z| > R,
FEOIS oy for |

and the conditions for the convergence and the residuum formula are fulfilled. Hence

is convergent.

t
(b) Now, £— are at most simple poles, so we bet by the residuum formula and RULE II,
s

b t t t t t ¢
ORE Z o o9 TmyTes *_ﬂ'— + res ——7CO(7TZ) 2

)
12 — w2n2 2 \2' 7 2 \2 7
n=—oo Z2_ _ Z2_ _
(=) (=)
t t t
(L)) gy cotlm) oy cot(me)
7T2 2L 22 z%—% 22
(3) = ()
cot | m- — cot | m- | ——
t ™ s t {7r
- ; - .
2.~ g
7r

+ 7 —'cotH—I-cott}:cott7
2 . <__>
T
and we have proved that

3

2t 2t

+0oo ¢
n=-—oo

(c) Since F(—z) = F(z), it follows from (b) for t € C\ {p7 | p € Z} that

=y 13X ¢ 1 t
g(t) = th_ﬂ.2n2:§§:t2_7r2n2+§ Z 12 — m2n2
n=1 n=1 n=-00
“+o00
1 t 1 t 1 1
_ 1 oL = —dcott—=\.
2 nzz_oo 2 —7m2n?2 2 2 —-720%2 2 {CO t }
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Example 8.17 Find the sum of the series

+o0 1

2 ara

The corresponding analytic function

1

o=

has the simple poles {1+, —1 44, —1 —4, 1 — i}, none of which lies in Z. Furthermore, f(z) is a
rational function with a zero of fourth order at oo, hence the series is convergent, and its sum is given
by a residuum formula,

+o0 1

t
S = Z res(“‘;jz )

n=—oo

Since z§ = —4 for every pole 2, it follows by RULE II that

es COt(ﬂz)'z = cot (mzp)res #‘z = cot (7zp) 1 _ 2 cot (mzp)
A4 0 Aya ) O 423 T 4zt 0

T cot (mzp) .

04
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Then by insertion,

—+oo

1 cot(m

Yot I (S in) - 2 rotlra)
1—6{(1+i)cot(7r+z‘7r)+(1—z‘)cot(w—m)+(—1+z‘)cot(—7r+i7r)+
116 {21 + i) cot(r + i) + 2(1 — i) cot(r — im)} = g {(1 + 1) cot(ir)
T cosh
29 — = . coth
8 " ismhr 4 O

thus
+oo 1

™
Z 7’L4——|—4 = Z'Cothﬂ'.

Remark 8.5 In a VARIANT we have the following estimates for e.g. |z| > 2,

1 1 1 1 1 1

1
P4 =4

RER

If(2) =

Q| >~

4
so in particular, C' = 3 and a =4 > 2 for |z| > 2. O

Example 8.18 Compute the sum of the series

+oo

Z 1 1 2\’
S (e ) (54 )

1 2
then f(z) is analytic in C\ {_§ , _5}’ where ——

1 2
, —= ¢ Z. Furthermore,
37 3

|22f |—>1 for z — oo,

(=1 —1)cot(—m —im)}

+ (1 —4) cot(—im)}
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so we have checked the conditions for the convergence of the series and the sum can be found by a
residuum formula. Hence,

—+oo
Z 1 cot(mz) 1 n cot(7z) 2
= —T § res ] res , T
Y (a2 YA AV
n=-co | n+t+—- | | n+- z4+= ) | z2+3 z+- ) | 2+3
3 3 3 3 3 3
T t( - 2_77 T T
cot | — 3 co 3 — cot 3 cot 3 -
= m =T — =m-3-2-cot -
L2 T T "1
3 3 3 3 3 3
1
where we have used that —— and —— are simple poles of f(z). Thus we have proved that
00 1
g =2V37.
+ 1 42
o (n+ <) |n+ <
3 3
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Example 8.19 1) Determine the singular points in C of f, defined by

1
22 (e — 1)’

(17) f(z) = pEN,

and find the residuum of f at every singular point.

HINT: When res(f(2);0) shall be found one may without proof apply the following Taylor series

eTpansion

z = B,
nl

er—1
b=0

n

z for |z| < 2m,

where the left hand side of the equality is replaced by 1 for z = 0.

2) Let K,, denote in the (x,y)-plane the boundary of the square
[=7n, o] X [=Tn, Ta], where r, =7 + 2nmw, and n € N.

Prove for every (fized) p € N that
f f(z)dz—0 forn — +o00  on N,
K,

where f is the function given by (17).

3) Apply Cauchy’s residuum theorem on the square with the boundary K,, and then apply the results
of (1) and (2) above, and the limit n — +oo to prove that

—+o0
1 (27)%P By
— = (=1)pH =P for every p € N.
; n?p (=1) 2(2p)!
Prove also that Ba, By, ..., Bap, ... have alternating signs.

1) The singular points are z = 2in7, n € Z. Of these, z = 0 is a (2n + 1)-tuple pole, while all the
others are simple poles.

2) Putting r, = 7 + 2n7 we get the following estimates,

dz
fome
- /rn dy + /rn dy
T S iy ety — 1 o = 4 iy ety — 1|

n dx Tn dx
+f — _
D | [P et — 1] S |z — iy [P e it — 1]

2ry, + 2r, 273; 27"Z _ 17“2”*1
n
|27 - 1 7|27 - % lrnl ™ o™ 2

2

<

— 0

for n — +o0.
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3) Now, z = 2inn is a simple pole for n € Z \ {0}, so we have the following computation of the

residuum,
. . 1 1 . 1 1
elfCp2nn) = Mmoo T e
dz
= g = (D
(2inm)2r (2m)2P  n?2p
Since

—+oo
z B, .
fl_ZH’Z’

n=0
it follows by a division by 2271,
+oo

1 _ Bn —n—2p—1
zzp(ez—l)_gnlz .

We find the term a-1 by choosing n = 2p, so
z

Ba,
(2p)!

Then by Cauchy’s residuum theorem,

res(f(2);0) = a1 =

’I’L

‘ B , 1 1
27rzf f(z)dz = res(f(z);?zkw):@—;};!+2-(—1) .(ZW)QPZkTP’

k=—n

hence by a rearrangement,

~ 1 (=) (27)*P Bay,
= )d 1P+t N.
;k% 2 27727{ f@dz+ ()" =E5, ne
Since p € N, the left hand side converges, when n — +o00. Then by (2) it follows from taking this
limit,
400 2
1 (27‘(’) p32
— (_1\pt1. D
321 i (-1) 22p)! for every p € N.

The left hand side is always positive, so the factor (—1)?*! on the right hand side causes that

>0 for p odd,
By,
<0 for p even,
and the sequence Ba, By, ..., By, ... has alternating sign.
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Example 8.20 Given the function
1
f(z) =

2?sinz’
1) Find all the isolated singularities in C of the function f, and determin the type for each of them.

2) Find in a neighbourhood of zo = 0 the principal part of the Laurent series of f, i.e. that part of
the series which contains terms of the type

b
-, n > 0.
Zn
(HINT. Use the Taylor series of sinz with zg = 0 as expansion point).
3) Find the residues in the isolated singularities of f.

4) Denote by N a positive integer, and let C'y denote the curve run through in a positive sense, which
is bounding the square

e[ ()

Compute §.  [f(2)dz.

{z=x—|—iy

5) When z = x + iy, then |sin z|?> = sin® x + sinh?®y. It follows that
|sin z| > | sin z| and |sin z| > | sinhyl.
Prove that

(2)dz — 0 for N — +o0.
CnN

6) Prove that

Ji’f (_l)nJrl - 7T_2
—  n? 12

1) We have poles at z = pm, p € Z. When p = 0, we see that the pole z = 0 is a triple pole; any other
pole is simple.

2) Now, f(z) is an odd function with the triple pole at z = 0, so the principal part must have the
structure

1 a_3 a—q
5o, 3 . T )
z2sin z z z
hence
sin 2 .
1 = a_3- +a_1-zsinz+ terms of order > 3
z

2'2 2
= a_g.{16+...}+a_1{z 7...}+...

1 2
= a_3-+ a_l—éa_g 254
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Then it follows by the identity theorem that

1

a_3=1 og a_1 = 6,

so the principal part is

3) We have in the triple pole zy = 0,

1 0 1
res [ —— =a_1 = —.
z2sin z 17 %

When z, = pm, p € Z\ {0}, the pole is simple, thus

Zz2sinz z—pr 22 cosz ™ p

1 1 1 -1)P 1
res(i;]ﬁr):lim—- =( )—
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Figure 22: The curve Cy for N = 2 and the singularities inside.

4) Using Cauchy’s residuum theorem,

N | 9 N )
0= 3 sl =+ 535
N — ﬂ- =
p=—N =
5) Then we have the estimates
d 1
/ 2—?§(2N+1)'——>0 for N — +o0,
r, 22sinz

1 2
(“5) m

where I"y is anyone of the vertical line segments of Cy.
In instead 'Y, is one of the horizontal segments, then

/ dz
5
z2sinz

%

for N — +oc.
Summing up we get

1 1
< (2N +1)- : =0

z 2 sinh [ N+ -
<N+2> T2 sin ( —|—2>7T

lim f(z)dz=

N—>+OO CN

2 “+o0
L

Ch|>—l

Finally, by a rearrangement,

+§ (_1)n+1 B 7T_2
— n? 12°
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